Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892703960> ?p ?o ?g. }
- W2892703960 endingPage "e0205844" @default.
- W2892703960 startingPage "e0205844" @default.
- W2892703960 abstract "Over the past decade, machine learning techniques have revolutionized how research and science are done, from designing new materials and predicting their properties to data mining and analysis to assisting drug discovery to advancing cybersecurity. Recently, we added to this list by showing how a machine learning algorithm (a so-called learner) combined with an optimization routine can assist experimental efforts in the realm of tuning semiconductor quantum dot (QD) devices. Among other applications, semiconductor quantum dots are a candidate system for building quantum computers. In order to employ QDs, one needs to tune the devices into a desirable configuration suitable for quantum computing. While current experiments adjust the control parameters heuristically, such an approach does not scale with the increasing size of the quantum dot arrays required for even near-term quantum computing demonstrations. Establishing a reliable protocol for tuning QD devices that does not rely on the gross-scale heuristics developed by experimentalists is thus of great importance.To implement the machine learning-based approach, we constructed a dataset of simulated QD device characteristics, such as the conductance and the charge sensor response versus the applied electrostatic gate voltages. The gate voltages are the experimental 'knobs' for tuning the device into useful regimes. Here, we describe the methodology for generating the dataset, as well as its validation in training convolutional neural networks.From 200 training sets sampled randomly from the full dataset, we show that the learner's accuracy in recognizing the state of a device is ≈ 96.5% when using either current-based or charge-sensor-based training. The spread in accuracy over our 200 training sets is 0.5% and 1.8% for current- and charge-sensor-based data, respectively. In addition, we also introduce a tool that enables other researchers to use this approach for further research: QFlow lite-a Python-based mini-software suite that uses the dataset to train neural networks to recognize the state of a device and differentiate between states in experimental data. This work gives the definitive reference for the new dataset that will help enable researchers to use it in their experiments or to develop new machine learning approaches and concepts." @default.
- W2892703960 created "2018-10-05" @default.
- W2892703960 creator A5018642214 @default.
- W2892703960 creator A5032321245 @default.
- W2892703960 creator A5043555425 @default.
- W2892703960 creator A5076669101 @default.
- W2892703960 creator A5087995407 @default.
- W2892703960 date "2018-10-17" @default.
- W2892703960 modified "2023-10-03" @default.
- W2892703960 title "QFlow lite dataset: A machine-learning approach to the charge states in quantum dot experiments" @default.
- W2892703960 cites W1990093616 @default.
- W2892703960 cites W2044239102 @default.
- W2892703960 cites W2060904747 @default.
- W2892703960 cites W2074117827 @default.
- W2892703960 cites W2083959088 @default.
- W2892703960 cites W2091223191 @default.
- W2892703960 cites W2103282498 @default.
- W2892703960 cites W2112724747 @default.
- W2892703960 cites W2147195941 @default.
- W2892703960 cites W2155524176 @default.
- W2892703960 cites W2163102067 @default.
- W2892703960 cites W2173810284 @default.
- W2892703960 cites W2257979135 @default.
- W2892703960 cites W2261254692 @default.
- W2892703960 cites W2398162417 @default.
- W2892703960 cites W2472045833 @default.
- W2892703960 cites W2507130573 @default.
- W2892703960 cites W2534820175 @default.
- W2892703960 cites W2550492386 @default.
- W2892703960 cites W2735457220 @default.
- W2892703960 cites W2758259983 @default.
- W2892703960 cites W2883488025 @default.
- W2892703960 cites W2963995121 @default.
- W2892703960 cites W3037853801 @default.
- W2892703960 cites W3098575976 @default.
- W2892703960 cites W3099192302 @default.
- W2892703960 cites W3100258903 @default.
- W2892703960 cites W3102144720 @default.
- W2892703960 cites W3102874048 @default.
- W2892703960 cites W3103869168 @default.
- W2892703960 cites W3104891479 @default.
- W2892703960 cites W597518952 @default.
- W2892703960 doi "https://doi.org/10.1371/journal.pone.0205844" @default.
- W2892703960 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6192646" @default.
- W2892703960 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30332463" @default.
- W2892703960 hasPublicationYear "2018" @default.
- W2892703960 type Work @default.
- W2892703960 sameAs 2892703960 @default.
- W2892703960 citedByCount "19" @default.
- W2892703960 countsByYear W28927039602019 @default.
- W2892703960 countsByYear W28927039602020 @default.
- W2892703960 countsByYear W28927039602021 @default.
- W2892703960 countsByYear W28927039602022 @default.
- W2892703960 countsByYear W28927039602023 @default.
- W2892703960 crossrefType "journal-article" @default.
- W2892703960 hasAuthorship W2892703960A5018642214 @default.
- W2892703960 hasAuthorship W2892703960A5032321245 @default.
- W2892703960 hasAuthorship W2892703960A5043555425 @default.
- W2892703960 hasAuthorship W2892703960A5076669101 @default.
- W2892703960 hasAuthorship W2892703960A5087995407 @default.
- W2892703960 hasBestOaLocation W28927039601 @default.
- W2892703960 hasConcept C111919701 @default.
- W2892703960 hasConcept C113775141 @default.
- W2892703960 hasConcept C119599485 @default.
- W2892703960 hasConcept C119857082 @default.
- W2892703960 hasConcept C121332964 @default.
- W2892703960 hasConcept C124657808 @default.
- W2892703960 hasConcept C127413603 @default.
- W2892703960 hasConcept C127705205 @default.
- W2892703960 hasConcept C154945302 @default.
- W2892703960 hasConcept C165801399 @default.
- W2892703960 hasConcept C2779960059 @default.
- W2892703960 hasConcept C41008148 @default.
- W2892703960 hasConcept C49040817 @default.
- W2892703960 hasConcept C58053490 @default.
- W2892703960 hasConcept C62520636 @default.
- W2892703960 hasConcept C81363708 @default.
- W2892703960 hasConcept C84114770 @default.
- W2892703960 hasConceptScore W2892703960C111919701 @default.
- W2892703960 hasConceptScore W2892703960C113775141 @default.
- W2892703960 hasConceptScore W2892703960C119599485 @default.
- W2892703960 hasConceptScore W2892703960C119857082 @default.
- W2892703960 hasConceptScore W2892703960C121332964 @default.
- W2892703960 hasConceptScore W2892703960C124657808 @default.
- W2892703960 hasConceptScore W2892703960C127413603 @default.
- W2892703960 hasConceptScore W2892703960C127705205 @default.
- W2892703960 hasConceptScore W2892703960C154945302 @default.
- W2892703960 hasConceptScore W2892703960C165801399 @default.
- W2892703960 hasConceptScore W2892703960C2779960059 @default.
- W2892703960 hasConceptScore W2892703960C41008148 @default.
- W2892703960 hasConceptScore W2892703960C49040817 @default.
- W2892703960 hasConceptScore W2892703960C58053490 @default.
- W2892703960 hasConceptScore W2892703960C62520636 @default.
- W2892703960 hasConceptScore W2892703960C81363708 @default.
- W2892703960 hasConceptScore W2892703960C84114770 @default.
- W2892703960 hasFunder F4320338295 @default.
- W2892703960 hasIssue "10" @default.
- W2892703960 hasLocation W28927039601 @default.