Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892772590> ?p ?o ?g. }
- W2892772590 endingPage "854" @default.
- W2892772590 startingPage "838" @default.
- W2892772590 abstract "The trading volume in stock markets is known as an important variable which reflects the liquidity of the financial markets and therefore is regarded to be greatly important for the measurement of market liquidity risk. In this work, a new concept called recurrence duration is introduced for study of daily trading volumes, which is inspired by idea of the volatility duration that was proposed and studied in our previous work. The recurrence duration is thought as the shortest passing time that the following days’ trading volume takes to exceed or go below the current trading volume which is time-varying. Similar to the volatility duration distribution of the price returns, the power-law function could describe the empirical probability distribution of recurrence durations of trading volumes, and their tail distributions can be fitted by two stretched exponential functions. Further, the correlation relationships of trading volumes between Chinese stock indices as well as the correlations of recurrence durations are investigated. One approach employed is a recently proposed method, time-dependent intrinsic correlation (TDIC), which is based on the empirical mode decomposition (EMD) to decompose nonlinear and nonstationary signals into the intrinsic mode functions (IMFs), the instantaneous periods of which are used then in determination of the sizes of sliding windows to compute the running correlation coefficients for the multiscale signals. The empirical results reveal rich patterns of correlations for both trading volumes and recurrence durations at different scales for different modes. Another approach is the widely-used DCCA cross-correlation coefficient, by which the level of cross-correlation is measured for both original series and IMF modes of the stock indices." @default.
- W2892772590 created "2018-10-05" @default.
- W2892772590 creator A5027008164 @default.
- W2892772590 creator A5034127226 @default.
- W2892772590 creator A5047607882 @default.
- W2892772590 date "2019-01-01" @default.
- W2892772590 modified "2023-10-12" @default.
- W2892772590 title "Recurrence duration statistics and time-dependent intrinsic correlation analysis of trading volumes: A study of Chinese stock indices" @default.
- W2892772590 cites W1562608595 @default.
- W2892772590 cites W1607313394 @default.
- W2892772590 cites W1915398038 @default.
- W2892772590 cites W1965865893 @default.
- W2892772590 cites W1969607816 @default.
- W2892772590 cites W1970151029 @default.
- W2892772590 cites W1974086622 @default.
- W2892772590 cites W1975839788 @default.
- W2892772590 cites W1980065916 @default.
- W2892772590 cites W1980839192 @default.
- W2892772590 cites W1989732321 @default.
- W2892772590 cites W1996143601 @default.
- W2892772590 cites W1998466129 @default.
- W2892772590 cites W1998513071 @default.
- W2892772590 cites W2004814690 @default.
- W2892772590 cites W2007221293 @default.
- W2892772590 cites W2029501294 @default.
- W2892772590 cites W2036705088 @default.
- W2892772590 cites W2037726243 @default.
- W2892772590 cites W2042572570 @default.
- W2892772590 cites W2045288439 @default.
- W2892772590 cites W2051244060 @default.
- W2892772590 cites W2051931130 @default.
- W2892772590 cites W2054962751 @default.
- W2892772590 cites W2069308542 @default.
- W2892772590 cites W2073332216 @default.
- W2892772590 cites W2076443537 @default.
- W2892772590 cites W2078237894 @default.
- W2892772590 cites W2087847167 @default.
- W2892772590 cites W2089409887 @default.
- W2892772590 cites W2095903124 @default.
- W2892772590 cites W2096053238 @default.
- W2892772590 cites W2105155927 @default.
- W2892772590 cites W2122528211 @default.
- W2892772590 cites W2127581893 @default.
- W2892772590 cites W2139583658 @default.
- W2892772590 cites W2145140171 @default.
- W2892772590 cites W2153146814 @default.
- W2892772590 cites W2155137688 @default.
- W2892772590 cites W2155346360 @default.
- W2892772590 cites W2210401039 @default.
- W2892772590 cites W2470033598 @default.
- W2892772590 cites W2598848270 @default.
- W2892772590 cites W2605549949 @default.
- W2892772590 cites W2754577977 @default.
- W2892772590 cites W2755481729 @default.
- W2892772590 cites W2778640573 @default.
- W2892772590 cites W3101912922 @default.
- W2892772590 cites W985360121 @default.
- W2892772590 doi "https://doi.org/10.1016/j.physa.2018.09.115" @default.
- W2892772590 hasPublicationYear "2019" @default.
- W2892772590 type Work @default.
- W2892772590 sameAs 2892772590 @default.
- W2892772590 citedByCount "4" @default.
- W2892772590 countsByYear W28927725902019 @default.
- W2892772590 countsByYear W28927725902020 @default.
- W2892772590 countsByYear W28927725902021 @default.
- W2892772590 crossrefType "journal-article" @default.
- W2892772590 hasAuthorship W2892772590A5027008164 @default.
- W2892772590 hasAuthorship W2892772590A5034127226 @default.
- W2892772590 hasAuthorship W2892772590A5047607882 @default.
- W2892772590 hasConcept C10138342 @default.
- W2892772590 hasConcept C105795698 @default.
- W2892772590 hasConcept C106159729 @default.
- W2892772590 hasConcept C112633086 @default.
- W2892772590 hasConcept C117220453 @default.
- W2892772590 hasConcept C127413603 @default.
- W2892772590 hasConcept C134306372 @default.
- W2892772590 hasConcept C149782125 @default.
- W2892772590 hasConcept C151376022 @default.
- W2892772590 hasConcept C151730666 @default.
- W2892772590 hasConcept C162324750 @default.
- W2892772590 hasConcept C183582576 @default.
- W2892772590 hasConcept C19244329 @default.
- W2892772590 hasConcept C204036174 @default.
- W2892772590 hasConcept C2524010 @default.
- W2892772590 hasConcept C25570617 @default.
- W2892772590 hasConcept C2780299701 @default.
- W2892772590 hasConcept C2780762169 @default.
- W2892772590 hasConcept C33923547 @default.
- W2892772590 hasConcept C78519656 @default.
- W2892772590 hasConcept C86803240 @default.
- W2892772590 hasConcept C91602232 @default.
- W2892772590 hasConceptScore W2892772590C10138342 @default.
- W2892772590 hasConceptScore W2892772590C105795698 @default.
- W2892772590 hasConceptScore W2892772590C106159729 @default.
- W2892772590 hasConceptScore W2892772590C112633086 @default.
- W2892772590 hasConceptScore W2892772590C117220453 @default.
- W2892772590 hasConceptScore W2892772590C127413603 @default.
- W2892772590 hasConceptScore W2892772590C134306372 @default.