Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892815144> ?p ?o ?g. }
- W2892815144 endingPage "2381" @default.
- W2892815144 startingPage "2373" @default.
- W2892815144 abstract "Enzymes are ubiquitous in living systems. Apart from traditional motor proteins, the function of enzymes was assumed to be confined to the promotion of biochemical reactions. Recent work shows that free swimming enzymes, when catalyzing reactions, generate enough mechanical force to cause their own movement, typically observed as substrate-concentration-dependent enhanced diffusion. Preliminary indication is that the impulsive force generated per turnover is comparable to the force produced by motor proteins and is within the range to activate biological adhesion molecules responsible for mechanosensation by cells, making force generation by enzymatic catalysis a novel mechanobiology-relevant event. Furthermore, when exposed to a gradient in substrate concentration, enzymes move up the gradient: an example of chemotaxis at the molecular level. The driving force for molecular chemotaxis appears to be the lowering of chemical potential due to thermodynamically favorable enzyme-substrate interactions and we suggest that chemotaxis promotes enzymatic catalysis by directing the motion of the catalyst and substrates toward each other. Enzymes that are part of a reaction cascade have been shown to assemble through sequential chemotaxis; each enzyme follows its own specific substrate gradient, which in turn is produced by the preceding enzymatic reaction. Thus, sequential chemotaxis in catalytic cascades allows time-dependent, self-assembly of specific catalyst particles. This is an example of how information can arise from chemical gradients, and it is tempting to suggest that similar mechanisms underlie the organization of living systems. On a practical level, chemotaxis can be used to separate out active catalysts from their less active or inactive counterparts in the presence of their respective substrates and should, therefore, find wide applicability. When attached to bigger particles, enzyme ensembles act as engines, imparting motility to the particles and moving them directionally in a substrate gradient. The impulsive force generated by enzyme catalysis can also be transmitted to the surrounding fluid and molecular and colloidal tracers, resulting in convective fluid pumping and enhanced tracer diffusion. Enzyme-powered pumps that transport fluid directionally can be fabricated by anchoring enzymes onto a solid support and supplying the substrate. Thus, enzyme pumps constitute a novel platform that combines sensing and microfluidic pumping into a single self-powered microdevice. Taken in its entirety, force generation by active enzymes has potential applications ranging from nanomachinery, nanoscale assembly, cargo transport, drug delivery, micro- and nanofluidics, and chemical/biochemical sensing. We also hypothesize that, in vivo, enzymes may be responsible for the stochastic motion of the cytoplasm, the organization of metabolons and signaling complexes, and the convective transport of fluid in cells. A detailed understanding of how enzymes convert chemical energy to directional mechanical force can lead us to the basic principles of fabrication, development, and monitoring of biological and biomimetic molecular machines." @default.
- W2892815144 created "2018-10-05" @default.
- W2892815144 creator A5013139151 @default.
- W2892815144 creator A5045136661 @default.
- W2892815144 creator A5060075972 @default.
- W2892815144 creator A5081008695 @default.
- W2892815144 date "2018-09-26" @default.
- W2892815144 modified "2023-10-14" @default.
- W2892815144 title "Powering Motion with Enzymes" @default.
- W2892815144 cites W1491086828 @default.
- W2892815144 cites W1803876176 @default.
- W2892815144 cites W1862599583 @default.
- W2892815144 cites W1984471712 @default.
- W2892815144 cites W1986922416 @default.
- W2892815144 cites W1992207786 @default.
- W2892815144 cites W2001962804 @default.
- W2892815144 cites W2002536502 @default.
- W2892815144 cites W2005025782 @default.
- W2892815144 cites W2009439307 @default.
- W2892815144 cites W2010366657 @default.
- W2892815144 cites W2013726610 @default.
- W2892815144 cites W2027068608 @default.
- W2892815144 cites W2034051900 @default.
- W2892815144 cites W2050508848 @default.
- W2892815144 cites W2050784678 @default.
- W2892815144 cites W2052766715 @default.
- W2892815144 cites W2058279551 @default.
- W2892815144 cites W2060096869 @default.
- W2892815144 cites W2061424126 @default.
- W2892815144 cites W2068103596 @default.
- W2892815144 cites W2079905392 @default.
- W2892815144 cites W2082375220 @default.
- W2892815144 cites W2083492065 @default.
- W2892815144 cites W2084068018 @default.
- W2892815144 cites W2088306031 @default.
- W2892815144 cites W2090294650 @default.
- W2892815144 cites W2093684011 @default.
- W2892815144 cites W2094469304 @default.
- W2892815144 cites W2102145519 @default.
- W2892815144 cites W2133660324 @default.
- W2892815144 cites W2152482858 @default.
- W2892815144 cites W2154126596 @default.
- W2892815144 cites W2160661199 @default.
- W2892815144 cites W2161435888 @default.
- W2892815144 cites W2161564264 @default.
- W2892815144 cites W2168179855 @default.
- W2892815144 cites W2171970118 @default.
- W2892815144 cites W2212217933 @default.
- W2892815144 cites W2273460296 @default.
- W2892815144 cites W2278156200 @default.
- W2892815144 cites W2287843702 @default.
- W2892815144 cites W2292423795 @default.
- W2892815144 cites W2314448445 @default.
- W2892815144 cites W2316195631 @default.
- W2892815144 cites W2316642714 @default.
- W2892815144 cites W2320810496 @default.
- W2892815144 cites W2322186399 @default.
- W2892815144 cites W2330672035 @default.
- W2892815144 cites W2332621967 @default.
- W2892815144 cites W2332894131 @default.
- W2892815144 cites W2344180621 @default.
- W2892815144 cites W2412956603 @default.
- W2892815144 cites W2523515292 @default.
- W2892815144 cites W2588076367 @default.
- W2892815144 cites W2592636577 @default.
- W2892815144 cites W2594308260 @default.
- W2892815144 cites W2595028612 @default.
- W2892815144 cites W2605643656 @default.
- W2892815144 cites W2611982930 @default.
- W2892815144 cites W2738662603 @default.
- W2892815144 cites W2742552651 @default.
- W2892815144 cites W2754351716 @default.
- W2892815144 cites W2762121208 @default.
- W2892815144 cites W2766006283 @default.
- W2892815144 cites W2770579810 @default.
- W2892815144 cites W2776366088 @default.
- W2892815144 cites W2780964015 @default.
- W2892815144 cites W2783839208 @default.
- W2892815144 cites W2791326993 @default.
- W2892815144 cites W2803320903 @default.
- W2892815144 cites W2893438388 @default.
- W2892815144 cites W4239478545 @default.
- W2892815144 cites W4248388871 @default.
- W2892815144 cites W4249642809 @default.
- W2892815144 cites W4302777425 @default.
- W2892815144 cites W4376848363 @default.
- W2892815144 doi "https://doi.org/10.1021/acs.accounts.8b00286" @default.
- W2892815144 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30256612" @default.
- W2892815144 hasPublicationYear "2018" @default.
- W2892815144 type Work @default.
- W2892815144 sameAs 2892815144 @default.
- W2892815144 citedByCount "118" @default.
- W2892815144 countsByYear W28928151442018 @default.
- W2892815144 countsByYear W28928151442019 @default.
- W2892815144 countsByYear W28928151442020 @default.
- W2892815144 countsByYear W28928151442021 @default.
- W2892815144 countsByYear W28928151442022 @default.
- W2892815144 countsByYear W28928151442023 @default.