Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892836571> ?p ?o ?g. }
- W2892836571 endingPage "1" @default.
- W2892836571 startingPage "1" @default.
- W2892836571 abstract "We propose an approach for the automated diagnosis of celiac disease (CD) and colonic polyps (CP) based on applying Fisher encoding to the activations of convolutional layers. In our experiments, three different convolutional neural network (CNN) architectures (AlexNet, VGG-f, and VGG-16) are applied to three endoscopic image databases (one CD database and two CP databases). For each network architecture, we perform experiments using a version of the net that is pretrained on the ImageNet database, as well as a version of the net that is trained on a specific endoscopic image database. The Fisher representations of convolutional layer activations are classified using support vector machines. Additionally, experiments are performed by concatenating the Fisher representations of several layers to combine the information of these layers. We will show that our proposed CNN-Fisher approach clearly outperforms other CNN- and non-CNN-based approaches and that our approach requires no training on the target dataset, which results in substantial time savings compared with other CNN-based approaches." @default.
- W2892836571 created "2018-10-05" @default.
- W2892836571 creator A5003786310 @default.
- W2892836571 creator A5007045083 @default.
- W2892836571 creator A5022175835 @default.
- W2892836571 creator A5062946437 @default.
- W2892836571 date "2018-09-24" @default.
- W2892836571 modified "2023-10-14" @default.
- W2892836571 title "Fisher encoding of convolutional neural network features for endoscopic image classification" @default.
- W2892836571 cites W1950136256 @default.
- W2892836571 cites W1963882359 @default.
- W2892836571 cites W1967144543 @default.
- W2892836571 cites W197796138 @default.
- W2892836571 cites W1983489633 @default.
- W2892836571 cites W1990053563 @default.
- W2892836571 cites W2026309211 @default.
- W2892836571 cites W2035908025 @default.
- W2892836571 cites W2042424508 @default.
- W2892836571 cites W2045234401 @default.
- W2892836571 cites W2071027807 @default.
- W2892836571 cites W2078705521 @default.
- W2892836571 cites W2084413241 @default.
- W2892836571 cites W2086193536 @default.
- W2892836571 cites W2107327240 @default.
- W2892836571 cites W2119425622 @default.
- W2892836571 cites W2134672608 @default.
- W2892836571 cites W2140798169 @default.
- W2892836571 cites W2282971418 @default.
- W2892836571 cites W2336803177 @default.
- W2892836571 cites W2422514535 @default.
- W2892836571 cites W2484403677 @default.
- W2892836571 cites W2488118557 @default.
- W2892836571 cites W2541669745 @default.
- W2892836571 cites W2560014990 @default.
- W2892836571 cites W2577050586 @default.
- W2892836571 cites W2608666421 @default.
- W2892836571 cites W2612965162 @default.
- W2892836571 cites W2637404261 @default.
- W2892836571 cites W2637598222 @default.
- W2892836571 cites W2963173190 @default.
- W2892836571 cites W4255711387 @default.
- W2892836571 doi "https://doi.org/10.1117/1.jmi.5.3.034504" @default.
- W2892836571 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6152583" @default.
- W2892836571 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30840751" @default.
- W2892836571 hasPublicationYear "2018" @default.
- W2892836571 type Work @default.
- W2892836571 sameAs 2892836571 @default.
- W2892836571 citedByCount "13" @default.
- W2892836571 countsByYear W28928365712019 @default.
- W2892836571 countsByYear W28928365712020 @default.
- W2892836571 countsByYear W28928365712021 @default.
- W2892836571 countsByYear W28928365712022 @default.
- W2892836571 crossrefType "journal-article" @default.
- W2892836571 hasAuthorship W2892836571A5003786310 @default.
- W2892836571 hasAuthorship W2892836571A5007045083 @default.
- W2892836571 hasAuthorship W2892836571A5022175835 @default.
- W2892836571 hasAuthorship W2892836571A5062946437 @default.
- W2892836571 hasBestOaLocation W28928365711 @default.
- W2892836571 hasConcept C115961682 @default.
- W2892836571 hasConcept C12267149 @default.
- W2892836571 hasConcept C125411270 @default.
- W2892836571 hasConcept C153180895 @default.
- W2892836571 hasConcept C154945302 @default.
- W2892836571 hasConcept C181367576 @default.
- W2892836571 hasConcept C207798031 @default.
- W2892836571 hasConcept C31510193 @default.
- W2892836571 hasConcept C41008148 @default.
- W2892836571 hasConcept C75294576 @default.
- W2892836571 hasConcept C81363708 @default.
- W2892836571 hasConceptScore W2892836571C115961682 @default.
- W2892836571 hasConceptScore W2892836571C12267149 @default.
- W2892836571 hasConceptScore W2892836571C125411270 @default.
- W2892836571 hasConceptScore W2892836571C153180895 @default.
- W2892836571 hasConceptScore W2892836571C154945302 @default.
- W2892836571 hasConceptScore W2892836571C181367576 @default.
- W2892836571 hasConceptScore W2892836571C207798031 @default.
- W2892836571 hasConceptScore W2892836571C31510193 @default.
- W2892836571 hasConceptScore W2892836571C41008148 @default.
- W2892836571 hasConceptScore W2892836571C75294576 @default.
- W2892836571 hasConceptScore W2892836571C81363708 @default.
- W2892836571 hasIssue "03" @default.
- W2892836571 hasLocation W28928365711 @default.
- W2892836571 hasLocation W28928365712 @default.
- W2892836571 hasLocation W28928365713 @default.
- W2892836571 hasLocation W28928365714 @default.
- W2892836571 hasOpenAccess W2892836571 @default.
- W2892836571 hasPrimaryLocation W28928365711 @default.
- W2892836571 hasRelatedWork W2028968693 @default.
- W2892836571 hasRelatedWork W2041399278 @default.
- W2892836571 hasRelatedWork W2056016498 @default.
- W2892836571 hasRelatedWork W2062582882 @default.
- W2892836571 hasRelatedWork W2153189372 @default.
- W2892836571 hasRelatedWork W2163073107 @default.
- W2892836571 hasRelatedWork W2785490962 @default.
- W2892836571 hasRelatedWork W2999842097 @default.
- W2892836571 hasRelatedWork W3193301557 @default.
- W2892836571 hasRelatedWork W3208266890 @default.
- W2892836571 hasVolume "5" @default.