Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892846966> ?p ?o ?g. }
- W2892846966 endingPage "52929" @default.
- W2892846966 startingPage "52911" @default.
- W2892846966 abstract "Diagnosis of deadly diseases, such as liver fibrosis, is very important. Clinical decision support systems (CDSSs) based on patient’s historical medical data and accurate AI techniques can aid physicians in their decision-making process. The task of arriving at an accurate and timely diagnosis decision is always complex because of the dynamic, vagueness, and uncertainty associated with this disease. Fuzzy logic can perfectly handle these issues. In recent years, two of the most interesting techniques are a fuzzy analytical hierarchy process (FAHP) and an adaptive neuro-fuzzy inference system (ANFIS). The FAHP is popular for dealing with uncertainty in multi-criteria decision-making, and the ANFIS is popular in learning fuzzy inference system from data based on artificial neural networks. To the best of our knowledge, these two methods have not been used to model CDSSs in fibrosis stage detection domain. In this paper, we develop a CDSS based on a case comparison of the effectiveness of the FAHP and the ANFIS in the medical diagnosis of the fibrosis disease. We carefully design and implement two frameworks based on these two techniques. Diagnostic real data of 119 cases infected by chronic viral hepatitis C from the Liver Institute at Mansoura University in Egypt are used to train and test both the FAHP and ANFIS. Criteria and subcriteria weights are based on opinions of two domain experts. The ANFIS model is designed using trial and error based on the analysis of various experiments. Results are later compared with the diagnostic conclusions of medical expert and other three medical and fuzzy techniques. The comparison results show that these two techniques can successfully be employed in designing a diagnostic CDSS system for fibrosis diagnosis. The two techniques achieve a classification accuracy of 93.3%. The results confirm the efficiency and effectiveness of both methods. Therefore, both the FAHP and ANFIS are viable approaches in modeling CDSS for diagnosis of a liver fibrosis stage." @default.
- W2892846966 created "2018-10-05" @default.
- W2892846966 creator A5028264068 @default.
- W2892846966 creator A5028787159 @default.
- W2892846966 creator A5052265483 @default.
- W2892846966 creator A5058249834 @default.
- W2892846966 creator A5063690062 @default.
- W2892846966 creator A5065711956 @default.
- W2892846966 date "2018-01-01" @default.
- W2892846966 modified "2023-10-06" @default.
- W2892846966 title "Clinical Decision Support System for Liver Fibrosis Prediction in Hepatitis Patients: A Case Comparison of Two Soft Computing Techniques" @default.
- W2892846966 cites W1427295198 @default.
- W2892846966 cites W1570834090 @default.
- W2892846966 cites W1967502173 @default.
- W2892846966 cites W1987347924 @default.
- W2892846966 cites W1988376612 @default.
- W2892846966 cites W1990632611 @default.
- W2892846966 cites W2001235041 @default.
- W2892846966 cites W2003552981 @default.
- W2892846966 cites W2017234559 @default.
- W2892846966 cites W2019207321 @default.
- W2892846966 cites W2022945351 @default.
- W2892846966 cites W2036209982 @default.
- W2892846966 cites W2050288270 @default.
- W2892846966 cites W2059536960 @default.
- W2892846966 cites W2069833012 @default.
- W2892846966 cites W2079818888 @default.
- W2892846966 cites W2094688336 @default.
- W2892846966 cites W2095485508 @default.
- W2892846966 cites W2095519076 @default.
- W2892846966 cites W2113413672 @default.
- W2892846966 cites W2126029446 @default.
- W2892846966 cites W2130773087 @default.
- W2892846966 cites W2155261480 @default.
- W2892846966 cites W2157590492 @default.
- W2892846966 cites W2510928027 @default.
- W2892846966 cites W2512479836 @default.
- W2892846966 cites W2531733772 @default.
- W2892846966 cites W2592309588 @default.
- W2892846966 cites W2737416694 @default.
- W2892846966 cites W2748345401 @default.
- W2892846966 cites W2765435434 @default.
- W2892846966 cites W2767620514 @default.
- W2892846966 cites W277020847 @default.
- W2892846966 cites W2773936431 @default.
- W2892846966 cites W2790004597 @default.
- W2892846966 cites W2792598011 @default.
- W2892846966 cites W2795595258 @default.
- W2892846966 cites W2796698500 @default.
- W2892846966 cites W2801570955 @default.
- W2892846966 cites W4211007335 @default.
- W2892846966 cites W751220591 @default.
- W2892846966 cites W2606080570 @default.
- W2892846966 doi "https://doi.org/10.1109/access.2018.2868802" @default.
- W2892846966 hasPublicationYear "2018" @default.
- W2892846966 type Work @default.
- W2892846966 sameAs 2892846966 @default.
- W2892846966 citedByCount "22" @default.
- W2892846966 countsByYear W28928469662018 @default.
- W2892846966 countsByYear W28928469662019 @default.
- W2892846966 countsByYear W28928469662020 @default.
- W2892846966 countsByYear W28928469662021 @default.
- W2892846966 countsByYear W28928469662022 @default.
- W2892846966 crossrefType "journal-article" @default.
- W2892846966 hasAuthorship W2892846966A5028264068 @default.
- W2892846966 hasAuthorship W2892846966A5028787159 @default.
- W2892846966 hasAuthorship W2892846966A5052265483 @default.
- W2892846966 hasAuthorship W2892846966A5058249834 @default.
- W2892846966 hasAuthorship W2892846966A5063690062 @default.
- W2892846966 hasAuthorship W2892846966A5065711956 @default.
- W2892846966 hasBestOaLocation W28928469661 @default.
- W2892846966 hasConcept C107327155 @default.
- W2892846966 hasConcept C119857082 @default.
- W2892846966 hasConcept C124101348 @default.
- W2892846966 hasConcept C140073362 @default.
- W2892846966 hasConcept C154945302 @default.
- W2892846966 hasConcept C186108316 @default.
- W2892846966 hasConcept C195975749 @default.
- W2892846966 hasConcept C202444582 @default.
- W2892846966 hasConcept C2776214188 @default.
- W2892846966 hasConcept C33923547 @default.
- W2892846966 hasConcept C41008148 @default.
- W2892846966 hasConcept C58166 @default.
- W2892846966 hasConcept C63527458 @default.
- W2892846966 hasConcept C9652623 @default.
- W2892846966 hasConceptScore W2892846966C107327155 @default.
- W2892846966 hasConceptScore W2892846966C119857082 @default.
- W2892846966 hasConceptScore W2892846966C124101348 @default.
- W2892846966 hasConceptScore W2892846966C140073362 @default.
- W2892846966 hasConceptScore W2892846966C154945302 @default.
- W2892846966 hasConceptScore W2892846966C186108316 @default.
- W2892846966 hasConceptScore W2892846966C195975749 @default.
- W2892846966 hasConceptScore W2892846966C202444582 @default.
- W2892846966 hasConceptScore W2892846966C2776214188 @default.
- W2892846966 hasConceptScore W2892846966C33923547 @default.
- W2892846966 hasConceptScore W2892846966C41008148 @default.
- W2892846966 hasConceptScore W2892846966C58166 @default.
- W2892846966 hasConceptScore W2892846966C63527458 @default.