Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892852704> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2892852704 abstract "Compressed Sensing (CS) exploits sparsity of images to reconstruct them exactly from a small set of measurements. Recent studies have shown that nonlocal sparsity leads to superior results in CS recovery. In this paper, we first propose a new sparsity model, which is characterized as a function of the coefficients achieved by transforming the 3D array generated from a set of similar image patches. The function which we use is the nonconvex Garrote function. To efficiently solve the proposed corresponding optimization problem, we then employ an accelerated algorithm based on iterative proximal methods. Our reconstruction method exploits the benefits of both nonlocal sparsity and nonconvex optimization. Experimental results show effectiveness of the proposed method compared with the many existing algorithms in CS image recovery." @default.
- W2892852704 created "2018-10-05" @default.
- W2892852704 creator A5010395567 @default.
- W2892852704 creator A5027961566 @default.
- W2892852704 creator A5082846224 @default.
- W2892852704 date "2018-05-01" @default.
- W2892852704 modified "2023-09-25" @default.
- W2892852704 title "Accelerated Proximal Gradient Method for Image Compressed Sensing Recovery Using Nonlocal Sparsity" @default.
- W2892852704 cites W2002969407 @default.
- W2892852704 cites W2042984553 @default.
- W2892852704 cites W2049819383 @default.
- W2892852704 cites W2070094080 @default.
- W2892852704 cites W2085417110 @default.
- W2892852704 cites W2100556411 @default.
- W2892852704 cites W2288435929 @default.
- W2892852704 cites W2319939478 @default.
- W2892852704 cites W2543013670 @default.
- W2892852704 cites W2730675479 @default.
- W2892852704 cites W4250955649 @default.
- W2892852704 doi "https://doi.org/10.1109/icee.2018.8472423" @default.
- W2892852704 hasPublicationYear "2018" @default.
- W2892852704 type Work @default.
- W2892852704 sameAs 2892852704 @default.
- W2892852704 citedByCount "1" @default.
- W2892852704 countsByYear W28928527042022 @default.
- W2892852704 crossrefType "proceedings-article" @default.
- W2892852704 hasAuthorship W2892852704A5010395567 @default.
- W2892852704 hasAuthorship W2892852704A5027961566 @default.
- W2892852704 hasAuthorship W2892852704A5082846224 @default.
- W2892852704 hasConcept C11413529 @default.
- W2892852704 hasConcept C115961682 @default.
- W2892852704 hasConcept C124851039 @default.
- W2892852704 hasConcept C154945302 @default.
- W2892852704 hasConcept C31972630 @default.
- W2892852704 hasConcept C41008148 @default.
- W2892852704 hasConceptScore W2892852704C11413529 @default.
- W2892852704 hasConceptScore W2892852704C115961682 @default.
- W2892852704 hasConceptScore W2892852704C124851039 @default.
- W2892852704 hasConceptScore W2892852704C154945302 @default.
- W2892852704 hasConceptScore W2892852704C31972630 @default.
- W2892852704 hasConceptScore W2892852704C41008148 @default.
- W2892852704 hasLocation W28928527041 @default.
- W2892852704 hasOpenAccess W2892852704 @default.
- W2892852704 hasPrimaryLocation W28928527041 @default.
- W2892852704 hasRelatedWork W1533292911 @default.
- W2892852704 hasRelatedWork W2005185696 @default.
- W2892852704 hasRelatedWork W2092957489 @default.
- W2892852704 hasRelatedWork W2130228941 @default.
- W2892852704 hasRelatedWork W2132132164 @default.
- W2892852704 hasRelatedWork W2161229648 @default.
- W2892852704 hasRelatedWork W2235753890 @default.
- W2892852704 hasRelatedWork W2314419244 @default.
- W2892852704 hasRelatedWork W2737780766 @default.
- W2892852704 hasRelatedWork W2993674027 @default.
- W2892852704 isParatext "false" @default.
- W2892852704 isRetracted "false" @default.
- W2892852704 magId "2892852704" @default.
- W2892852704 workType "article" @default.