Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892863488> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2892863488 endingPage "193" @default.
- W2892863488 startingPage "185" @default.
- W2892863488 abstract "Summary Objectives: Our goal was to develop predictive models for sepsis and in-hospital mortality using electronic health records (EHRs). We showcased the efficiency of these algorithms in patients diagnosed with pneumonia, a group that is highly susceptible to sepsis. Methods: We retrospectively analyzed the Health Facts® (HF) dataset to develop models to predict mortality and sepsis using the data from the first few hours after admission. In addition, we developed models to predict sepsis using the data collected in the last few hours leading to sepsis onset. We used the random forest classifier to develop the models. Results: The data collected in the EHR system is generally sporadic, making feature extraction and selection difficult, affecting the accuracies of the models. Despite this fact, the developed models can predict sepsis and in-hospital mortality with accuracies of up to 65.26±0.33% and 68.64±0.48%, and sensitivities of up to 67.24±0.36% and 74.00±1.22%, respectively, using only the data from the first 12 hours after admission. The accuracies generally remain consistent for similar models developed using the data from the first 24 and 48 hours after admission. Lastly, the developed models can accurately predict sepsis patients (with up to 98.63±0.17% accuracy and 99.74%±0.13% sensitivity) using the data collected within the last 12 hours before sepsis onset. The results suggest that if such algorithms continuously monitor patients, they can identify sepsis patients in a manner comparable to current screening tools, such as the rulebased Systemic Inflammatory Response Syndrome (SIRS) criteria, while often allowing for early detection of sepsis shortly after admission. Conclusions: The developed models showed promise in early prediction of sepsis, providing an opportunity for directing early intervention efforts to prevent/treat sepsis." @default.
- W2892863488 created "2018-10-05" @default.
- W2892863488 creator A5005681030 @default.
- W2892863488 creator A5010701146 @default.
- W2892863488 creator A5055364261 @default.
- W2892863488 creator A5058742429 @default.
- W2892863488 creator A5081065900 @default.
- W2892863488 date "2018-09-01" @default.
- W2892863488 modified "2023-09-26" @default.
- W2892863488 title "Prediction of Sepsis and In-Hospital Mortality Using Electronic Health Records" @default.
- W2892863488 cites W121474560 @default.
- W2892863488 cites W1534233404 @default.
- W2892863488 cites W1565377632 @default.
- W2892863488 cites W1995875735 @default.
- W2892863488 cites W2002730524 @default.
- W2892863488 cites W2012563576 @default.
- W2892863488 cites W2041404167 @default.
- W2892863488 cites W2087901682 @default.
- W2892863488 cites W2100220027 @default.
- W2892863488 cites W2101234009 @default.
- W2892863488 cites W2107947924 @default.
- W2892863488 cites W2110114082 @default.
- W2892863488 cites W2121394390 @default.
- W2892863488 cites W2153537259 @default.
- W2892863488 cites W2200122354 @default.
- W2892863488 cites W2280404143 @default.
- W2892863488 cites W2609231317 @default.
- W2892863488 cites W2768146862 @default.
- W2892863488 cites W2911964244 @default.
- W2892863488 doi "https://doi.org/10.3414/me18-01-0014" @default.
- W2892863488 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30248708" @default.
- W2892863488 hasPublicationYear "2018" @default.
- W2892863488 type Work @default.
- W2892863488 sameAs 2892863488 @default.
- W2892863488 citedByCount "19" @default.
- W2892863488 countsByYear W28928634882018 @default.
- W2892863488 countsByYear W28928634882019 @default.
- W2892863488 countsByYear W28928634882020 @default.
- W2892863488 countsByYear W28928634882021 @default.
- W2892863488 countsByYear W28928634882022 @default.
- W2892863488 countsByYear W28928634882023 @default.
- W2892863488 crossrefType "journal-article" @default.
- W2892863488 hasAuthorship W2892863488A5005681030 @default.
- W2892863488 hasAuthorship W2892863488A5010701146 @default.
- W2892863488 hasAuthorship W2892863488A5055364261 @default.
- W2892863488 hasAuthorship W2892863488A5058742429 @default.
- W2892863488 hasAuthorship W2892863488A5081065900 @default.
- W2892863488 hasConcept C119857082 @default.
- W2892863488 hasConcept C126322002 @default.
- W2892863488 hasConcept C160735492 @default.
- W2892863488 hasConcept C162324750 @default.
- W2892863488 hasConcept C169258074 @default.
- W2892863488 hasConcept C177713679 @default.
- W2892863488 hasConcept C194828623 @default.
- W2892863488 hasConcept C2777914695 @default.
- W2892863488 hasConcept C2778384902 @default.
- W2892863488 hasConcept C3019952477 @default.
- W2892863488 hasConcept C3020144179 @default.
- W2892863488 hasConcept C41008148 @default.
- W2892863488 hasConcept C50522688 @default.
- W2892863488 hasConcept C71924100 @default.
- W2892863488 hasConceptScore W2892863488C119857082 @default.
- W2892863488 hasConceptScore W2892863488C126322002 @default.
- W2892863488 hasConceptScore W2892863488C160735492 @default.
- W2892863488 hasConceptScore W2892863488C162324750 @default.
- W2892863488 hasConceptScore W2892863488C169258074 @default.
- W2892863488 hasConceptScore W2892863488C177713679 @default.
- W2892863488 hasConceptScore W2892863488C194828623 @default.
- W2892863488 hasConceptScore W2892863488C2777914695 @default.
- W2892863488 hasConceptScore W2892863488C2778384902 @default.
- W2892863488 hasConceptScore W2892863488C3019952477 @default.
- W2892863488 hasConceptScore W2892863488C3020144179 @default.
- W2892863488 hasConceptScore W2892863488C41008148 @default.
- W2892863488 hasConceptScore W2892863488C50522688 @default.
- W2892863488 hasConceptScore W2892863488C71924100 @default.
- W2892863488 hasIssue "04" @default.
- W2892863488 hasLocation W28928634881 @default.
- W2892863488 hasLocation W28928634882 @default.
- W2892863488 hasOpenAccess W2892863488 @default.
- W2892863488 hasPrimaryLocation W28928634881 @default.
- W2892863488 hasRelatedWork W1976253807 @default.
- W2892863488 hasRelatedWork W2030278871 @default.
- W2892863488 hasRelatedWork W2052643498 @default.
- W2892863488 hasRelatedWork W2108039615 @default.
- W2892863488 hasRelatedWork W2330276053 @default.
- W2892863488 hasRelatedWork W2765874913 @default.
- W2892863488 hasRelatedWork W2966471828 @default.
- W2892863488 hasRelatedWork W3024460317 @default.
- W2892863488 hasRelatedWork W3157892566 @default.
- W2892863488 hasRelatedWork W4207057956 @default.
- W2892863488 hasVolume "57" @default.
- W2892863488 isParatext "false" @default.
- W2892863488 isRetracted "false" @default.
- W2892863488 magId "2892863488" @default.
- W2892863488 workType "article" @default.