Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892867095> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2892867095 endingPage "1" @default.
- W2892867095 startingPage "1" @default.
- W2892867095 abstract "Machine part sorting is important and monotonous in smart factory. In this paper, an auto-sorting system is proposed based on the deep learning method. In the proposed system, an industrial objection detection network combined with a robotic arm controlling system is designed to automatically and efficiently complete machine part sorting. Region-based full convolutional network (R-FCN) is applied for locating and recognizing different types of images of industrial object models. After comparison and simulation analysis, it illustrated that the R-FCN model trained with enough labeled data can efficiently and accurately recognize the object from the images captured by visual sensors. Furthermore, with enough data, the network can be robust to view angle rotation both vertically and horizontally, and a small part of overlapping of object will not mislead the judgment of the network in most situations. The case study results illustrate that the position and type of objects can be successfully detected. The code will be available publicly at https://github.com/tianwangbuaa/ ." @default.
- W2892867095 created "2018-10-05" @default.
- W2892867095 creator A5006546107 @default.
- W2892867095 creator A5010509421 @default.
- W2892867095 creator A5021163747 @default.
- W2892867095 creator A5051576858 @default.
- W2892867095 creator A5066400774 @default.
- W2892867095 creator A5072705483 @default.
- W2892867095 date "2018-01-01" @default.
- W2892867095 modified "2023-09-25" @default.
- W2892867095 title "Auto-sorting System Towards Smart Factory based on Deep learning for Image Segmentation" @default.
- W2892867095 cites W1536680647 @default.
- W2892867095 cites W1996111510 @default.
- W2892867095 cites W2020041214 @default.
- W2892867095 cites W2031489346 @default.
- W2892867095 cites W203466237 @default.
- W2892867095 cites W2071662014 @default.
- W2892867095 cites W2102605133 @default.
- W2892867095 cites W2107323262 @default.
- W2892867095 cites W2109255472 @default.
- W2892867095 cites W2129840796 @default.
- W2892867095 cites W2136922672 @default.
- W2892867095 cites W2194775991 @default.
- W2892867095 cites W2517201201 @default.
- W2892867095 cites W2517803083 @default.
- W2892867095 cites W2532281363 @default.
- W2892867095 cites W2547160878 @default.
- W2892867095 cites W2550884357 @default.
- W2892867095 cites W2562873461 @default.
- W2892867095 cites W2580726517 @default.
- W2892867095 cites W2586932430 @default.
- W2892867095 cites W2626030747 @default.
- W2892867095 cites W2749684264 @default.
- W2892867095 cites W2753418202 @default.
- W2892867095 cites W2766313503 @default.
- W2892867095 cites W2766826879 @default.
- W2892867095 cites W2767933817 @default.
- W2892867095 cites W2788276261 @default.
- W2892867095 cites W2790750381 @default.
- W2892867095 cites W2963037989 @default.
- W2892867095 cites W4245100975 @default.
- W2892867095 doi "https://doi.org/10.1109/jsen.2018.2866943" @default.
- W2892867095 hasPublicationYear "2018" @default.
- W2892867095 type Work @default.
- W2892867095 sameAs 2892867095 @default.
- W2892867095 citedByCount "13" @default.
- W2892867095 countsByYear W28928670952019 @default.
- W2892867095 countsByYear W28928670952020 @default.
- W2892867095 countsByYear W28928670952021 @default.
- W2892867095 countsByYear W28928670952022 @default.
- W2892867095 countsByYear W28928670952023 @default.
- W2892867095 crossrefType "journal-article" @default.
- W2892867095 hasAuthorship W2892867095A5006546107 @default.
- W2892867095 hasAuthorship W2892867095A5010509421 @default.
- W2892867095 hasAuthorship W2892867095A5021163747 @default.
- W2892867095 hasAuthorship W2892867095A5051576858 @default.
- W2892867095 hasAuthorship W2892867095A5066400774 @default.
- W2892867095 hasAuthorship W2892867095A5072705483 @default.
- W2892867095 hasConcept C108583219 @default.
- W2892867095 hasConcept C111696304 @default.
- W2892867095 hasConcept C115961682 @default.
- W2892867095 hasConcept C124504099 @default.
- W2892867095 hasConcept C153180895 @default.
- W2892867095 hasConcept C154945302 @default.
- W2892867095 hasConcept C199360897 @default.
- W2892867095 hasConcept C31972630 @default.
- W2892867095 hasConcept C40149104 @default.
- W2892867095 hasConcept C41008148 @default.
- W2892867095 hasConcept C89600930 @default.
- W2892867095 hasConceptScore W2892867095C108583219 @default.
- W2892867095 hasConceptScore W2892867095C111696304 @default.
- W2892867095 hasConceptScore W2892867095C115961682 @default.
- W2892867095 hasConceptScore W2892867095C124504099 @default.
- W2892867095 hasConceptScore W2892867095C153180895 @default.
- W2892867095 hasConceptScore W2892867095C154945302 @default.
- W2892867095 hasConceptScore W2892867095C199360897 @default.
- W2892867095 hasConceptScore W2892867095C31972630 @default.
- W2892867095 hasConceptScore W2892867095C40149104 @default.
- W2892867095 hasConceptScore W2892867095C41008148 @default.
- W2892867095 hasConceptScore W2892867095C89600930 @default.
- W2892867095 hasLocation W28928670951 @default.
- W2892867095 hasLocation W28928670952 @default.
- W2892867095 hasOpenAccess W2892867095 @default.
- W2892867095 hasPrimaryLocation W28928670951 @default.
- W2892867095 hasRelatedWork W1507266234 @default.
- W2892867095 hasRelatedWork W1669643531 @default.
- W2892867095 hasRelatedWork W2110230079 @default.
- W2892867095 hasRelatedWork W2117664411 @default.
- W2892867095 hasRelatedWork W2117933325 @default.
- W2892867095 hasRelatedWork W2122581818 @default.
- W2892867095 hasRelatedWork W2159066190 @default.
- W2892867095 hasRelatedWork W2739874619 @default.
- W2892867095 hasRelatedWork W2948658236 @default.
- W2892867095 hasRelatedWork W1967061043 @default.
- W2892867095 isParatext "false" @default.
- W2892867095 isRetracted "false" @default.
- W2892867095 magId "2892867095" @default.
- W2892867095 workType "article" @default.