Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892875286> ?p ?o ?g. }
- W2892875286 endingPage "e1006102" @default.
- W2892875286 startingPage "e1006102" @default.
- W2892875286 abstract "High-throughput data generation platforms, like mass-spectrometry, microarrays, and second-generation sequencing are susceptible to batch effects due to run-to-run variation in reagents, equipment, protocols, or personnel. Currently, batch correction methods are not commonly applied to microbiome sequencing datasets. In this paper, we compare different batch-correction methods applied to microbiome case-control studies. We introduce a model-free normalization procedure where features (i.e. bacterial taxa) in case samples are converted to percentiles of the equivalent features in control samples within a study prior to pooling data across studies. We look at how this percentile-normalization method compares to traditional meta-analysis methods for combining independent p-values and to limma and ComBat, widely used batch-correction models developed for RNA microarray data. Overall, we show that percentile-normalization is a simple, non-parametric approach for correcting batch effects and improving sensitivity in case-control meta-analyses." @default.
- W2892875286 created "2018-10-05" @default.
- W2892875286 creator A5064118261 @default.
- W2892875286 creator A5078594398 @default.
- W2892875286 creator A5091119492 @default.
- W2892875286 date "2018-04-23" @default.
- W2892875286 modified "2023-10-17" @default.
- W2892875286 title "Correcting for batch effects in case-control microbiome studies" @default.
- W2892875286 cites W1968105193 @default.
- W2892875286 cites W1970035161 @default.
- W2892875286 cites W1982070737 @default.
- W2892875286 cites W1985638738 @default.
- W2892875286 cites W1986849266 @default.
- W2892875286 cites W2015567271 @default.
- W2892875286 cites W2017425843 @default.
- W2892875286 cites W2019714748 @default.
- W2892875286 cites W2037279825 @default.
- W2892875286 cites W2052903163 @default.
- W2892875286 cites W2078148918 @default.
- W2892875286 cites W2085284704 @default.
- W2892875286 cites W2089246633 @default.
- W2892875286 cites W2090894239 @default.
- W2892875286 cites W2096192437 @default.
- W2892875286 cites W2096604969 @default.
- W2892875286 cites W2099266276 @default.
- W2892875286 cites W2101565190 @default.
- W2892875286 cites W2102538757 @default.
- W2892875286 cites W2103412200 @default.
- W2892875286 cites W2107665951 @default.
- W2892875286 cites W2107805776 @default.
- W2892875286 cites W2108865848 @default.
- W2892875286 cites W2118629634 @default.
- W2892875286 cites W2123914286 @default.
- W2892875286 cites W2124351063 @default.
- W2892875286 cites W2125784987 @default.
- W2892875286 cites W2128800339 @default.
- W2892875286 cites W2130725058 @default.
- W2892875286 cites W2137499573 @default.
- W2892875286 cites W2139345901 @default.
- W2892875286 cites W2143777796 @default.
- W2892875286 cites W2146512944 @default.
- W2892875286 cites W2147825765 @default.
- W2892875286 cites W2148541040 @default.
- W2892875286 cites W2149573313 @default.
- W2892875286 cites W2152885278 @default.
- W2892875286 cites W2157159562 @default.
- W2892875286 cites W2169474803 @default.
- W2892875286 cites W2175465469 @default.
- W2892875286 cites W2181523240 @default.
- W2892875286 cites W2288508081 @default.
- W2892875286 cites W2314413252 @default.
- W2892875286 cites W2339999662 @default.
- W2892875286 cites W2377027462 @default.
- W2892875286 cites W2473355215 @default.
- W2892875286 cites W2508175702 @default.
- W2892875286 cites W2588601551 @default.
- W2892875286 cites W2603756957 @default.
- W2892875286 cites W2771045365 @default.
- W2892875286 cites W2949435898 @default.
- W2892875286 doi "https://doi.org/10.1371/journal.pcbi.1006102" @default.
- W2892875286 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5940237" @default.
- W2892875286 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29684016" @default.
- W2892875286 hasPublicationYear "2018" @default.
- W2892875286 type Work @default.
- W2892875286 sameAs 2892875286 @default.
- W2892875286 citedByCount "99" @default.
- W2892875286 countsByYear W28928752862019 @default.
- W2892875286 countsByYear W28928752862020 @default.
- W2892875286 countsByYear W28928752862021 @default.
- W2892875286 countsByYear W28928752862022 @default.
- W2892875286 countsByYear W28928752862023 @default.
- W2892875286 crossrefType "journal-article" @default.
- W2892875286 hasAuthorship W2892875286A5064118261 @default.
- W2892875286 hasAuthorship W2892875286A5078594398 @default.
- W2892875286 hasAuthorship W2892875286A5091119492 @default.
- W2892875286 hasBestOaLocation W28928752861 @default.
- W2892875286 hasConcept C104317684 @default.
- W2892875286 hasConcept C105795698 @default.
- W2892875286 hasConcept C117251300 @default.
- W2892875286 hasConcept C122048520 @default.
- W2892875286 hasConcept C124101348 @default.
- W2892875286 hasConcept C136886441 @default.
- W2892875286 hasConcept C143121216 @default.
- W2892875286 hasConcept C144024400 @default.
- W2892875286 hasConcept C15151743 @default.
- W2892875286 hasConcept C154945302 @default.
- W2892875286 hasConcept C19165224 @default.
- W2892875286 hasConcept C33923547 @default.
- W2892875286 hasConcept C41008148 @default.
- W2892875286 hasConcept C54355233 @default.
- W2892875286 hasConcept C60644358 @default.
- W2892875286 hasConcept C70437156 @default.
- W2892875286 hasConcept C70721500 @default.
- W2892875286 hasConcept C86803240 @default.
- W2892875286 hasConceptScore W2892875286C104317684 @default.
- W2892875286 hasConceptScore W2892875286C105795698 @default.
- W2892875286 hasConceptScore W2892875286C117251300 @default.
- W2892875286 hasConceptScore W2892875286C122048520 @default.