Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892900716> ?p ?o ?g. }
- W2892900716 endingPage "1227" @default.
- W2892900716 startingPage "1215" @default.
- W2892900716 abstract "Recently, increasing studies have shown that miRNAs are involved in the development and progression of various complex diseases. Consequently, predicting potential miRNA-disease associations makes an important contribution to understanding the pathogenesis of diseases, developing new drugs as well as designing individualized diagnostic and therapeutic approaches for different human diseases. Nonetheless, the inherent noise and incompleteness in the existing biological datasets have limited the prediction accuracy of current computational models. To solve this issue, in this paper, we propose a novel method for miRNA-disease association prediction based on global linear neighborhoods (GLNMDA). Specifically, our method obtains a new miRNA/disease similarity matrix by linearly reconstructing each miRNA/disease according to the known experimentally verified miRNA-disease associations. We then adopt label propagation to infer the potential associations between miRNAs and diseases. As a result, GLNMDA achieved reliable performance in the frameworks of both local and global LOOCV (AUCs of 0.867 and 0.929, respectively) and 5-fold cross validation (average AUC of 0.926). Case studies on five common human diseases further confirmed the utility of our method in discovering latent miRNA-disease pairs. Taken together, GLNMDA could serve as a reliable computational tool for miRNA-disease association prediction." @default.
- W2892900716 created "2018-10-05" @default.
- W2892900716 creator A5019845646 @default.
- W2892900716 creator A5026469278 @default.
- W2892900716 creator A5047063645 @default.
- W2892900716 creator A5052382857 @default.
- W2892900716 creator A5060902170 @default.
- W2892900716 creator A5086050506 @default.
- W2892900716 date "2018-09-02" @default.
- W2892900716 modified "2023-10-05" @default.
- W2892900716 title "GLNMDA: a novel method for miRNA-disease association prediction based on global linear neighborhoods" @default.
- W2892900716 cites W1436642346 @default.
- W2892900716 cites W1577392641 @default.
- W2892900716 cites W1763867024 @default.
- W2892900716 cites W1847551302 @default.
- W2892900716 cites W1967087625 @default.
- W2892900716 cites W1978929052 @default.
- W2892900716 cites W1991674206 @default.
- W2892900716 cites W1996020380 @default.
- W2892900716 cites W2000102678 @default.
- W2892900716 cites W2004233098 @default.
- W2892900716 cites W2006797972 @default.
- W2892900716 cites W2014946489 @default.
- W2892900716 cites W2016027556 @default.
- W2892900716 cites W2016700676 @default.
- W2892900716 cites W2023427658 @default.
- W2892900716 cites W2023620453 @default.
- W2892900716 cites W2027514285 @default.
- W2892900716 cites W2036169252 @default.
- W2892900716 cites W2037011799 @default.
- W2892900716 cites W2047967134 @default.
- W2892900716 cites W2066148089 @default.
- W2892900716 cites W2082565035 @default.
- W2892900716 cites W2094463698 @default.
- W2892900716 cites W2115326133 @default.
- W2892900716 cites W2118814218 @default.
- W2892900716 cites W2120294133 @default.
- W2892900716 cites W2122211092 @default.
- W2892900716 cites W2124007301 @default.
- W2892900716 cites W2124756133 @default.
- W2892900716 cites W2126140528 @default.
- W2892900716 cites W2126619650 @default.
- W2892900716 cites W2128768066 @default.
- W2892900716 cites W2135836598 @default.
- W2892900716 cites W2137720275 @default.
- W2892900716 cites W2141222510 @default.
- W2892900716 cites W2143693563 @default.
- W2892900716 cites W2145361279 @default.
- W2892900716 cites W2150767213 @default.
- W2892900716 cites W2153210075 @default.
- W2892900716 cites W2158135353 @default.
- W2892900716 cites W2258129851 @default.
- W2892900716 cites W2293841445 @default.
- W2892900716 cites W2313125707 @default.
- W2892900716 cites W2315178103 @default.
- W2892900716 cites W2344103844 @default.
- W2892900716 cites W2410390867 @default.
- W2892900716 cites W2427122612 @default.
- W2892900716 cites W2462108616 @default.
- W2892900716 cites W2511620854 @default.
- W2892900716 cites W2534014507 @default.
- W2892900716 cites W2538404222 @default.
- W2892900716 cites W2570618306 @default.
- W2892900716 cites W2584926544 @default.
- W2892900716 cites W2601934706 @default.
- W2892900716 cites W2607159126 @default.
- W2892900716 cites W2625232369 @default.
- W2892900716 cites W2750900465 @default.
- W2892900716 cites W2752850911 @default.
- W2892900716 cites W2756511952 @default.
- W2892900716 cites W2770663710 @default.
- W2892900716 cites W2771545712 @default.
- W2892900716 cites W2780584018 @default.
- W2892900716 cites W2780777007 @default.
- W2892900716 cites W2781702232 @default.
- W2892900716 cites W2790013415 @default.
- W2892900716 cites W2794298491 @default.
- W2892900716 cites W2795540478 @default.
- W2892900716 cites W2798261172 @default.
- W2892900716 cites W2799307902 @default.
- W2892900716 cites W2802913018 @default.
- W2892900716 cites W2949685204 @default.
- W2892900716 cites W3146565636 @default.
- W2892900716 doi "https://doi.org/10.1080/15476286.2018.1521210" @default.
- W2892900716 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6284594" @default.
- W2892900716 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30244645" @default.
- W2892900716 hasPublicationYear "2018" @default.
- W2892900716 type Work @default.
- W2892900716 sameAs 2892900716 @default.
- W2892900716 citedByCount "18" @default.
- W2892900716 countsByYear W28929007162018 @default.
- W2892900716 countsByYear W28929007162019 @default.
- W2892900716 countsByYear W28929007162020 @default.
- W2892900716 countsByYear W28929007162021 @default.
- W2892900716 countsByYear W28929007162022 @default.
- W2892900716 countsByYear W28929007162023 @default.
- W2892900716 crossrefType "journal-article" @default.
- W2892900716 hasAuthorship W2892900716A5019845646 @default.