Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892925823> ?p ?o ?g. }
- W2892925823 endingPage "244" @default.
- W2892925823 startingPage "234" @default.
- W2892925823 abstract "Abstract Recently, considerable efforts have been made in feature selection to improve the original feature subspace. In this paper, we proposed a graph regularized low-rank tensor representation (GRLTR) for feature selection. We jointly incorporated the low-rank representation and the graph embedding into a unified learning framework to preserve the intrinsic global low-dimension structure and local geometrical structure of data together. According to the wide presence of multidimensional data, our proposed framework is based on tensor, which can faithfully maintain the information. To improve the performance of specific clustering task, we employed the idea of embedded-based feature selection into our model for optimizing the feature representation and clustering result simultaneously. Experimental results on six available datasets suggest our proposed approach produces superior performances compared with several state-of-the-art methods." @default.
- W2892925823 created "2018-10-05" @default.
- W2892925823 creator A5000190108 @default.
- W2892925823 creator A5005542093 @default.
- W2892925823 creator A5033713097 @default.
- W2892925823 creator A5035282947 @default.
- W2892925823 creator A5053668853 @default.
- W2892925823 creator A5070024214 @default.
- W2892925823 date "2018-10-01" @default.
- W2892925823 modified "2023-09-24" @default.
- W2892925823 title "Graph regularized low-rank tensor representation for feature selection" @default.
- W2892925823 cites W1649622209 @default.
- W2892925823 cites W1963826206 @default.
- W2892925823 cites W1975172027 @default.
- W2892925823 cites W1981458038 @default.
- W2892925823 cites W1986326495 @default.
- W2892925823 cites W2013822448 @default.
- W2892925823 cites W2020547911 @default.
- W2892925823 cites W2030628896 @default.
- W2892925823 cites W2042576467 @default.
- W2892925823 cites W2062063412 @default.
- W2892925823 cites W2066024605 @default.
- W2892925823 cites W2076363162 @default.
- W2892925823 cites W2078677240 @default.
- W2892925823 cites W2091449379 @default.
- W2892925823 cites W2096044434 @default.
- W2892925823 cites W2100659887 @default.
- W2892925823 cites W2104696249 @default.
- W2892925823 cites W2107799335 @default.
- W2892925823 cites W2262946425 @default.
- W2892925823 cites W2334831412 @default.
- W2892925823 cites W2335082123 @default.
- W2892925823 cites W2604849926 @default.
- W2892925823 cites W2962759270 @default.
- W2892925823 cites W2963634791 @default.
- W2892925823 doi "https://doi.org/10.1016/j.jvcir.2018.09.020" @default.
- W2892925823 hasPublicationYear "2018" @default.
- W2892925823 type Work @default.
- W2892925823 sameAs 2892925823 @default.
- W2892925823 citedByCount "6" @default.
- W2892925823 countsByYear W28929258232019 @default.
- W2892925823 countsByYear W28929258232020 @default.
- W2892925823 countsByYear W28929258232022 @default.
- W2892925823 countsByYear W28929258232023 @default.
- W2892925823 crossrefType "journal-article" @default.
- W2892925823 hasAuthorship W2892925823A5000190108 @default.
- W2892925823 hasAuthorship W2892925823A5005542093 @default.
- W2892925823 hasAuthorship W2892925823A5033713097 @default.
- W2892925823 hasAuthorship W2892925823A5035282947 @default.
- W2892925823 hasAuthorship W2892925823A5053668853 @default.
- W2892925823 hasAuthorship W2892925823A5070024214 @default.
- W2892925823 hasConcept C114614502 @default.
- W2892925823 hasConcept C132525143 @default.
- W2892925823 hasConcept C136119220 @default.
- W2892925823 hasConcept C138885662 @default.
- W2892925823 hasConcept C148483581 @default.
- W2892925823 hasConcept C153180895 @default.
- W2892925823 hasConcept C154945302 @default.
- W2892925823 hasConcept C155281189 @default.
- W2892925823 hasConcept C164226766 @default.
- W2892925823 hasConcept C17744445 @default.
- W2892925823 hasConcept C199539241 @default.
- W2892925823 hasConcept C202444582 @default.
- W2892925823 hasConcept C2776359362 @default.
- W2892925823 hasConcept C2776401178 @default.
- W2892925823 hasConcept C33923547 @default.
- W2892925823 hasConcept C41008148 @default.
- W2892925823 hasConcept C41895202 @default.
- W2892925823 hasConcept C80444323 @default.
- W2892925823 hasConcept C94625758 @default.
- W2892925823 hasConceptScore W2892925823C114614502 @default.
- W2892925823 hasConceptScore W2892925823C132525143 @default.
- W2892925823 hasConceptScore W2892925823C136119220 @default.
- W2892925823 hasConceptScore W2892925823C138885662 @default.
- W2892925823 hasConceptScore W2892925823C148483581 @default.
- W2892925823 hasConceptScore W2892925823C153180895 @default.
- W2892925823 hasConceptScore W2892925823C154945302 @default.
- W2892925823 hasConceptScore W2892925823C155281189 @default.
- W2892925823 hasConceptScore W2892925823C164226766 @default.
- W2892925823 hasConceptScore W2892925823C17744445 @default.
- W2892925823 hasConceptScore W2892925823C199539241 @default.
- W2892925823 hasConceptScore W2892925823C202444582 @default.
- W2892925823 hasConceptScore W2892925823C2776359362 @default.
- W2892925823 hasConceptScore W2892925823C2776401178 @default.
- W2892925823 hasConceptScore W2892925823C33923547 @default.
- W2892925823 hasConceptScore W2892925823C41008148 @default.
- W2892925823 hasConceptScore W2892925823C41895202 @default.
- W2892925823 hasConceptScore W2892925823C80444323 @default.
- W2892925823 hasConceptScore W2892925823C94625758 @default.
- W2892925823 hasLocation W28929258231 @default.
- W2892925823 hasOpenAccess W2892925823 @default.
- W2892925823 hasPrimaryLocation W28929258231 @default.
- W2892925823 hasRelatedWork W1974639358 @default.
- W2892925823 hasRelatedWork W2015538044 @default.
- W2892925823 hasRelatedWork W2159220931 @default.
- W2892925823 hasRelatedWork W2316780152 @default.
- W2892925823 hasRelatedWork W2374344280 @default.
- W2892925823 hasRelatedWork W2592385986 @default.