Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892930510> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2892930510 abstract "In India, it is observed that the number of people losing their lives in road accidents especially on highways is more than the death resulting due to naxalite, terrorism activity or epidemic. Government is investing plenty of money to educate people regarding road safety and curb death due to accidents, but people used to avoid it and entering themselves into danger zone. Several lives could be saved if the person(s) make use of helmet and wear seat belts while driving vehicles. Further, it is next to impossible for traffic police to catch each rider violating traffic rules, thus there is a need of the system to identify people disobeying road safety guideline which involves use of helmet and seat belt. The idea is to impose appropriate fine on such people to force them follow the road safety guidelines. Bike-riders without helmet and driving four wheeler without wearing seatbelt should be caught. Authors have performed four feature extraction techniques namely Scale-Invariant Feature Transform (SIFT), Speeded-Up Robust Features (SURF), Template Matching and Oriented FAST and Rotated BRIEF(ORB) to detect objects like vehicles, helmets, number plates, seatbelts for traffic data sets on Raspberry Pi 2 (B) using OpenCV3.0 and Python 3.4.2. These feature extraction techniques have been evaluated on collected dataset and simulation results performed on raspberry pi on valid dataset. The observation suggests that SIFT algorithm can be used to get higher accuracy compared to SURF and ORB for rule violators at toll system on highways or traffic cross road in city." @default.
- W2892930510 created "2018-10-05" @default.
- W2892930510 creator A5045739604 @default.
- W2892930510 creator A5056806305 @default.
- W2892930510 date "2018-02-01" @default.
- W2892930510 modified "2023-10-13" @default.
- W2892930510 title "Comparison of feature extraction techniques to recognize traffic rule violations using low processing embedded system" @default.
- W2892930510 cites W1481460540 @default.
- W2892930510 cites W1975580034 @default.
- W2892930510 cites W2000629924 @default.
- W2892930510 cites W2001619278 @default.
- W2892930510 cites W2002992539 @default.
- W2892930510 cites W2049078995 @default.
- W2892930510 cites W2071631792 @default.
- W2892930510 cites W2088173505 @default.
- W2892930510 cites W2124386111 @default.
- W2892930510 cites W2342810050 @default.
- W2892930510 cites W2404062328 @default.
- W2892930510 cites W2515744211 @default.
- W2892930510 cites W2519108195 @default.
- W2892930510 cites W2520013149 @default.
- W2892930510 cites W2578179458 @default.
- W2892930510 cites W2594457117 @default.
- W2892930510 cites W2594620817 @default.
- W2892930510 cites W2735592023 @default.
- W2892930510 cites W2737791013 @default.
- W2892930510 cites W2912128403 @default.
- W2892930510 doi "https://doi.org/10.1109/spin.2018.8474067" @default.
- W2892930510 hasPublicationYear "2018" @default.
- W2892930510 type Work @default.
- W2892930510 sameAs 2892930510 @default.
- W2892930510 citedByCount "4" @default.
- W2892930510 countsByYear W28929305102020 @default.
- W2892930510 crossrefType "proceedings-article" @default.
- W2892930510 hasAuthorship W2892930510A5045739604 @default.
- W2892930510 hasAuthorship W2892930510A5056806305 @default.
- W2892930510 hasConcept C111919701 @default.
- W2892930510 hasConcept C127413603 @default.
- W2892930510 hasConcept C154945302 @default.
- W2892930510 hasConcept C22212356 @default.
- W2892930510 hasConcept C2778025104 @default.
- W2892930510 hasConcept C38652104 @default.
- W2892930510 hasConcept C41008148 @default.
- W2892930510 hasConcept C519991488 @default.
- W2892930510 hasConcept C52622490 @default.
- W2892930510 hasConcept C54355233 @default.
- W2892930510 hasConcept C61265191 @default.
- W2892930510 hasConcept C86803240 @default.
- W2892930510 hasConceptScore W2892930510C111919701 @default.
- W2892930510 hasConceptScore W2892930510C127413603 @default.
- W2892930510 hasConceptScore W2892930510C154945302 @default.
- W2892930510 hasConceptScore W2892930510C22212356 @default.
- W2892930510 hasConceptScore W2892930510C2778025104 @default.
- W2892930510 hasConceptScore W2892930510C38652104 @default.
- W2892930510 hasConceptScore W2892930510C41008148 @default.
- W2892930510 hasConceptScore W2892930510C519991488 @default.
- W2892930510 hasConceptScore W2892930510C52622490 @default.
- W2892930510 hasConceptScore W2892930510C54355233 @default.
- W2892930510 hasConceptScore W2892930510C61265191 @default.
- W2892930510 hasConceptScore W2892930510C86803240 @default.
- W2892930510 hasLocation W28929305101 @default.
- W2892930510 hasOpenAccess W2892930510 @default.
- W2892930510 hasPrimaryLocation W28929305101 @default.
- W2892930510 hasRelatedWork W1517644160 @default.
- W2892930510 hasRelatedWork W2111989369 @default.
- W2892930510 hasRelatedWork W2602931862 @default.
- W2892930510 hasRelatedWork W2898700462 @default.
- W2892930510 hasRelatedWork W2902830107 @default.
- W2892930510 hasRelatedWork W2908223858 @default.
- W2892930510 hasRelatedWork W2973088886 @default.
- W2892930510 hasRelatedWork W3004998184 @default.
- W2892930510 hasRelatedWork W3011712030 @default.
- W2892930510 hasRelatedWork W3117088178 @default.
- W2892930510 hasRelatedWork W3129678299 @default.
- W2892930510 hasRelatedWork W3157437534 @default.
- W2892930510 hasRelatedWork W3158941256 @default.
- W2892930510 hasRelatedWork W3163309729 @default.
- W2892930510 hasRelatedWork W3195639551 @default.
- W2892930510 hasRelatedWork W3206317471 @default.
- W2892930510 hasRelatedWork W3206432496 @default.
- W2892930510 hasRelatedWork W3210135458 @default.
- W2892930510 hasRelatedWork W2825961909 @default.
- W2892930510 hasRelatedWork W3016500086 @default.
- W2892930510 isParatext "false" @default.
- W2892930510 isRetracted "false" @default.
- W2892930510 magId "2892930510" @default.
- W2892930510 workType "article" @default.