Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892943043> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2892943043 endingPage "101042831879926" @default.
- W2892943043 startingPage "101042831879926" @default.
- W2892943043 abstract "Synovial sarcoma is a rare disease with diverse progression characteristics. We developed a novel deep-learning-based prediction algorithm for survival rates of synovial sarcoma patients. The purpose of this study is to evaluate the performance of the proposed prediction model and demonstrate its clinical usage. The study involved 242 patients who were diagnosed with synovial sarcoma in three institutions between March 2001 and February 2013. The patients were randomly divided into a training set (80%) and a testing set (20%). Fivefold cross validation was performed utilizing the training set. The test set was retained for the final testing. A Cox proportional hazard model, simple neural network, and the proposed survival neural network were all trained utilizing the same training set, and fivefold cross validation was performed. The final testing was performed utilizing the isolated test data to determine the best prediction model. The multivariate Cox proportional hazard regression analysis revealed that size, initial metastasis, and margin were independent prognostic factors. In fivefold cross validation, the median value of the receiver-operating characteristic curve (area under the curve) was 0.87 in the survival neural network, which is significantly higher compared to the area under the curve of 0.792 for the simple neural network (p = 0.043). In the final test, survival neural network model showed the better performance (area under the curve: 0.814) compared to the Cox proportional hazard model (area under the curve: 0.629; p = 0.0001). The survival neural network model predicted survival of synovial sarcoma patients more accurately compared to Cox proportional hazard model." @default.
- W2892943043 created "2018-10-05" @default.
- W2892943043 creator A5010373165 @default.
- W2892943043 creator A5017055996 @default.
- W2892943043 creator A5026048609 @default.
- W2892943043 creator A5027637809 @default.
- W2892943043 creator A5064355894 @default.
- W2892943043 date "2018-08-01" @default.
- W2892943043 modified "2023-10-17" @default.
- W2892943043 title "Deep learning approach for survival prediction for patients with synovial sarcoma" @default.
- W2892943043 cites W133770749 @default.
- W2892943043 cites W1559860937 @default.
- W2892943043 cites W1909079918 @default.
- W2892943043 cites W1959758810 @default.
- W2892943043 cites W1983368815 @default.
- W2892943043 cites W2005472071 @default.
- W2892943043 cites W2018104949 @default.
- W2892943043 cites W2116056899 @default.
- W2892943043 cites W2118475754 @default.
- W2892943043 cites W2328176404 @default.
- W2892943043 cites W2518778637 @default.
- W2892943043 cites W2529872083 @default.
- W2892943043 doi "https://doi.org/10.1177/1010428318799264" @default.
- W2892943043 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30261823" @default.
- W2892943043 hasPublicationYear "2018" @default.
- W2892943043 type Work @default.
- W2892943043 sameAs 2892943043 @default.
- W2892943043 citedByCount "14" @default.
- W2892943043 countsByYear W28929430432019 @default.
- W2892943043 countsByYear W28929430432020 @default.
- W2892943043 countsByYear W28929430432021 @default.
- W2892943043 countsByYear W28929430432022 @default.
- W2892943043 countsByYear W28929430432023 @default.
- W2892943043 crossrefType "journal-article" @default.
- W2892943043 hasAuthorship W2892943043A5010373165 @default.
- W2892943043 hasAuthorship W2892943043A5017055996 @default.
- W2892943043 hasAuthorship W2892943043A5026048609 @default.
- W2892943043 hasAuthorship W2892943043A5027637809 @default.
- W2892943043 hasAuthorship W2892943043A5064355894 @default.
- W2892943043 hasBestOaLocation W28929430431 @default.
- W2892943043 hasConcept C10515644 @default.
- W2892943043 hasConcept C119857082 @default.
- W2892943043 hasConcept C126322002 @default.
- W2892943043 hasConcept C142724271 @default.
- W2892943043 hasConcept C154945302 @default.
- W2892943043 hasConcept C169903167 @default.
- W2892943043 hasConcept C207103383 @default.
- W2892943043 hasConcept C27181475 @default.
- W2892943043 hasConcept C2776910622 @default.
- W2892943043 hasConcept C2778256501 @default.
- W2892943043 hasConcept C41008148 @default.
- W2892943043 hasConcept C44249647 @default.
- W2892943043 hasConcept C50382708 @default.
- W2892943043 hasConcept C50644808 @default.
- W2892943043 hasConcept C58471807 @default.
- W2892943043 hasConcept C58489278 @default.
- W2892943043 hasConcept C71924100 @default.
- W2892943043 hasConceptScore W2892943043C10515644 @default.
- W2892943043 hasConceptScore W2892943043C119857082 @default.
- W2892943043 hasConceptScore W2892943043C126322002 @default.
- W2892943043 hasConceptScore W2892943043C142724271 @default.
- W2892943043 hasConceptScore W2892943043C154945302 @default.
- W2892943043 hasConceptScore W2892943043C169903167 @default.
- W2892943043 hasConceptScore W2892943043C207103383 @default.
- W2892943043 hasConceptScore W2892943043C27181475 @default.
- W2892943043 hasConceptScore W2892943043C2776910622 @default.
- W2892943043 hasConceptScore W2892943043C2778256501 @default.
- W2892943043 hasConceptScore W2892943043C41008148 @default.
- W2892943043 hasConceptScore W2892943043C44249647 @default.
- W2892943043 hasConceptScore W2892943043C50382708 @default.
- W2892943043 hasConceptScore W2892943043C50644808 @default.
- W2892943043 hasConceptScore W2892943043C58471807 @default.
- W2892943043 hasConceptScore W2892943043C58489278 @default.
- W2892943043 hasConceptScore W2892943043C71924100 @default.
- W2892943043 hasIssue "9" @default.
- W2892943043 hasLocation W28929430431 @default.
- W2892943043 hasLocation W28929430432 @default.
- W2892943043 hasLocation W28929430433 @default.
- W2892943043 hasOpenAccess W2892943043 @default.
- W2892943043 hasPrimaryLocation W28929430431 @default.
- W2892943043 hasRelatedWork W2118215538 @default.
- W2892943043 hasRelatedWork W2119070014 @default.
- W2892943043 hasRelatedWork W2128245076 @default.
- W2892943043 hasRelatedWork W2130909087 @default.
- W2892943043 hasRelatedWork W2346902798 @default.
- W2892943043 hasRelatedWork W2892943043 @default.
- W2892943043 hasRelatedWork W2945363082 @default.
- W2892943043 hasRelatedWork W2994686985 @default.
- W2892943043 hasRelatedWork W3099765033 @default.
- W2892943043 hasRelatedWork W3164720416 @default.
- W2892943043 hasVolume "40" @default.
- W2892943043 isParatext "false" @default.
- W2892943043 isRetracted "false" @default.
- W2892943043 magId "2892943043" @default.
- W2892943043 workType "article" @default.