Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892948282> ?p ?o ?g. }
- W2892948282 endingPage "38" @default.
- W2892948282 startingPage "1" @default.
- W2892948282 abstract "We say an algorithm on n × n matrices with integer entries in [− M , M ] (or n -node graphs with edge weights from [− M , M ]) is truly subcubic if it runs in O ( n 3 − δ ċ poly(log M )) time for some δ > 0. We define a notion of subcubic reducibility and show that many important problems on graphs and matrices solvable in O ( n 3 ) time are equivalent under subcubic reductions. Namely, the following weighted problems either all have truly subcubic algorithms, or none of them do: •The all-pairs shortest paths problem on weighted digraphs (APSP). •Detecting if a weighted graph has a triangle of negative total edge weight. •Listing up to n 2.99 negative triangles in an edge-weighted graph. •Finding a minimum weight cycle in a graph of non-negative edge weights. •The replacement paths problem on weighted digraphs. •Finding the second shortest simple path between two nodes in a weighted digraph. •Checking whether a given matrix defines a metric. •Verifying the correctness of a matrix product over the (min, +)-semiring. •Finding a maximum subarray in a given matrix. Therefore, if APSP cannot be solved in n 3−ε time for any ε > 0, then many other problems also need essentially cubic time. In fact, we show generic equivalences between matrix products over a large class of algebraic structures used in optimization, verifying a matrix product over the same structure, and corresponding triangle detection problems over the structure. These equivalences simplify prior work on subcubic algorithms for all-pairs path problems, since it now suffices to give appropriate subcubic triangle detection algorithms. Other consequences of our work are new combinatorial approaches to Boolean matrix multiplication over the (OR,AND)-semiring (abbreviated as BMM). We show that practical advances in triangle detection would imply practical BMM algorithms, among other results. Building on our techniques, we give two improved BMM algorithms: a derandomization of the combinatorial BMM algorithm of Bansal and Williams (FOCS’09), and an improved quantum algorithm for BMM." @default.
- W2892948282 created "2018-10-05" @default.
- W2892948282 creator A5044244682 @default.
- W2892948282 creator A5046851838 @default.
- W2892948282 date "2018-08-29" @default.
- W2892948282 modified "2023-10-11" @default.
- W2892948282 title "Subcubic Equivalences Between Path, Matrix, and Triangle Problems" @default.
- W2892948282 cites W130302987 @default.
- W2892948282 cites W1699132431 @default.
- W2892948282 cites W1773616669 @default.
- W2892948282 cites W1974906551 @default.
- W2892948282 cites W1978868826 @default.
- W2892948282 cites W1979740015 @default.
- W2892948282 cites W1984407615 @default.
- W2892948282 cites W1986084080 @default.
- W2892948282 cites W1989274820 @default.
- W2892948282 cites W1991858502 @default.
- W2892948282 cites W1996839061 @default.
- W2892948282 cites W1998002108 @default.
- W2892948282 cites W2007572995 @default.
- W2892948282 cites W2010275623 @default.
- W2892948282 cites W2011282943 @default.
- W2892948282 cites W2018033449 @default.
- W2892948282 cites W2025063099 @default.
- W2892948282 cites W2035476608 @default.
- W2892948282 cites W2038073775 @default.
- W2892948282 cites W2047505657 @default.
- W2892948282 cites W2049153008 @default.
- W2892948282 cites W2049500052 @default.
- W2892948282 cites W2051531384 @default.
- W2892948282 cites W2057393374 @default.
- W2892948282 cites W2060164640 @default.
- W2892948282 cites W2064790310 @default.
- W2892948282 cites W2066367171 @default.
- W2892948282 cites W2072858942 @default.
- W2892948282 cites W2072985157 @default.
- W2892948282 cites W2073094163 @default.
- W2892948282 cites W2075543862 @default.
- W2892948282 cites W2078948975 @default.
- W2892948282 cites W2084224084 @default.
- W2892948282 cites W2098207812 @default.
- W2892948282 cites W2104734478 @default.
- W2892948282 cites W2120248756 @default.
- W2892948282 cites W2120489629 @default.
- W2892948282 cites W2128267908 @default.
- W2892948282 cites W2131058166 @default.
- W2892948282 cites W2133768189 @default.
- W2892948282 cites W2140232587 @default.
- W2892948282 cites W2144367957 @default.
- W2892948282 cites W2144534163 @default.
- W2892948282 cites W2149710566 @default.
- W2892948282 cites W2152290683 @default.
- W2892948282 cites W2161863751 @default.
- W2892948282 cites W2165928982 @default.
- W2892948282 cites W2168336253 @default.
- W2892948282 cites W2171019266 @default.
- W2892948282 cites W2395349147 @default.
- W2892948282 cites W2404196336 @default.
- W2892948282 cites W2545919726 @default.
- W2892948282 cites W2618199688 @default.
- W2892948282 cites W3003200965 @default.
- W2892948282 cites W3023108254 @default.
- W2892948282 cites W4213071546 @default.
- W2892948282 cites W4250699059 @default.
- W2892948282 doi "https://doi.org/10.1145/3186893" @default.
- W2892948282 hasPublicationYear "2018" @default.
- W2892948282 type Work @default.
- W2892948282 sameAs 2892948282 @default.
- W2892948282 citedByCount "87" @default.
- W2892948282 countsByYear W28929482822012 @default.
- W2892948282 countsByYear W28929482822015 @default.
- W2892948282 countsByYear W28929482822017 @default.
- W2892948282 countsByYear W28929482822018 @default.
- W2892948282 countsByYear W28929482822019 @default.
- W2892948282 countsByYear W28929482822020 @default.
- W2892948282 countsByYear W28929482822021 @default.
- W2892948282 countsByYear W28929482822022 @default.
- W2892948282 countsByYear W28929482822023 @default.
- W2892948282 crossrefType "journal-article" @default.
- W2892948282 hasAuthorship W2892948282A5044244682 @default.
- W2892948282 hasAuthorship W2892948282A5046851838 @default.
- W2892948282 hasBestOaLocation W28929482822 @default.
- W2892948282 hasConcept C106487976 @default.
- W2892948282 hasConcept C114614502 @default.
- W2892948282 hasConcept C118615104 @default.
- W2892948282 hasConcept C121332964 @default.
- W2892948282 hasConcept C132525143 @default.
- W2892948282 hasConcept C146380142 @default.
- W2892948282 hasConcept C159985019 @default.
- W2892948282 hasConcept C17349429 @default.
- W2892948282 hasConcept C192562407 @default.
- W2892948282 hasConcept C199360897 @default.
- W2892948282 hasConcept C22590252 @default.
- W2892948282 hasConcept C2777735758 @default.
- W2892948282 hasConcept C2779145032 @default.
- W2892948282 hasConcept C33923547 @default.
- W2892948282 hasConcept C41008148 @default.
- W2892948282 hasConcept C62520636 @default.