Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892950114> ?p ?o ?g. }
- W2892950114 abstract "Coupling biomass models with nutrient concentrations can provide sound estimations of carbon and nutrient contents, enabling the improvement of carbon and nutrient balance in forest ecosystems. Although nutrient concentrations are often assumed to be constant for some species and specific tree components, at least in mature stands, the concentrations usually vary with age, site index and even with tree density. The main objective of this study was to evaluate the sources of variation in nutrient concentrations in biomass compartments usually removed during harvesting operations, covering a range of species and management conditions: semi-natural forest, conventional forest plantations and short rotation forestry (SRF). Five species (Betula pubescens, Quercus robur, Eucalyptus globulus, Eucalyptus nitens and Populus spp.) and 14 genotypes were considered. A total of 430 trees were sampled in 61 plots to obtain 6 biomass components: leaves, twigs, thin branches, thick branches, bark and wood. Aboveground leafless biomass was pooled together for poplar. The concentrations of C, N, K, P, Ca, Mg, S, Fe, Mn, Cu, Zn and B were measured and the total biomass of each sampled tree and plot were determined. The data were analysed using boosted regression trees and conventional techniques. The main sources of variation in nutrient concentrations were biomass component > > genotype (species) ≈ age > tree diameter. The concentrations of Ca, Mg and K were most strongly affected by genotype and age. The concentrations of P, K, Ca, Mg, S and Cu in the wood component decreased with age, whereas C concentrations increased, with a trend to reach 50% in the older trees. In the SRF, interamerican poplar and P. trichocarpa genotypes were comparatively more efficient in terms of Ca and K nutrient assimilation index (NAI) (+ 65–85%) than eucalypts, mainly because leafless biomass can be removed. In the conventional eucalypt plantations (rotation 15 years), debarking the wood at logging (savings of 225% of Ca and 254% of Mg for E. globulus) or the use of selected genotypes (savings of 45% of P and 35% of Ca) will provide wood at a relatively lower nutrient cost. Considering all the E. globulus genotypes together, the management for pulp with removal of debarked wood shows NAI values well above (× 1.7–× 3.9) the ones found for poplar or eucalypt SRF and also higher (× 1.6–× 4.0) than the ones found for oak and birch managed in medium or long rotations. The annual rates of nutrient removal were low in the native broadleaved species but the rates of available soil nutrients removed were high as compared to poplar or eucalypts. Management of native broadleaved species should consider nutrient stability through selection of the biomass compartments removed. The nutrient assimilation index is higher in poplar grown under short rotation forestry management than in the other systems considered. Nutrient management of fast growing eucalyptus plantations could be improved by selecting efficient genotypes and limiting removal of wood. The values of the nutrient assimilation index are lower in the natural stands of native broadleaved species than in the other systems considered." @default.
- W2892950114 created "2018-10-05" @default.
- W2892950114 creator A5015789316 @default.
- W2892950114 creator A5022267610 @default.
- W2892950114 creator A5029648289 @default.
- W2892950114 creator A5046691388 @default.
- W2892950114 creator A5051939691 @default.
- W2892950114 creator A5053554342 @default.
- W2892950114 creator A5065878898 @default.
- W2892950114 creator A5072012052 @default.
- W2892950114 creator A5082128518 @default.
- W2892950114 date "2018-11-05" @default.
- W2892950114 modified "2023-10-17" @default.
- W2892950114 title "Exploring the factors affecting carbon and nutrient concentrations in tree biomass components in natural forests, forest plantations and short rotation forestry" @default.
- W2892950114 cites W1456450653 @default.
- W2892950114 cites W1530376507 @default.
- W2892950114 cites W1678356000 @default.
- W2892950114 cites W1964860660 @default.
- W2892950114 cites W1977433972 @default.
- W2892950114 cites W1978261112 @default.
- W2892950114 cites W1980849408 @default.
- W2892950114 cites W1982495989 @default.
- W2892950114 cites W1988399510 @default.
- W2892950114 cites W1989909455 @default.
- W2892950114 cites W2001573024 @default.
- W2892950114 cites W2003539089 @default.
- W2892950114 cites W2013551880 @default.
- W2892950114 cites W2015194964 @default.
- W2892950114 cites W2021235049 @default.
- W2892950114 cites W2026473694 @default.
- W2892950114 cites W2027682705 @default.
- W2892950114 cites W2028749185 @default.
- W2892950114 cites W2033168515 @default.
- W2892950114 cites W2036313476 @default.
- W2892950114 cites W2053300508 @default.
- W2892950114 cites W2062534668 @default.
- W2892950114 cites W2067580020 @default.
- W2892950114 cites W2069092824 @default.
- W2892950114 cites W2069255467 @default.
- W2892950114 cites W2073528873 @default.
- W2892950114 cites W2075321081 @default.
- W2892950114 cites W2077060702 @default.
- W2892950114 cites W2092155312 @default.
- W2892950114 cites W2097910310 @default.
- W2892950114 cites W2102152313 @default.
- W2892950114 cites W2103292701 @default.
- W2892950114 cites W2119930774 @default.
- W2892950114 cites W2121953325 @default.
- W2892950114 cites W2135695572 @default.
- W2892950114 cites W2137888014 @default.
- W2892950114 cites W2147705831 @default.
- W2892950114 cites W2150015642 @default.
- W2892950114 cites W2156366722 @default.
- W2892950114 cites W2157918818 @default.
- W2892950114 cites W2162695555 @default.
- W2892950114 cites W2164468496 @default.
- W2892950114 cites W2165729938 @default.
- W2892950114 cites W2183121226 @default.
- W2892950114 cites W2202567682 @default.
- W2892950114 cites W2256663472 @default.
- W2892950114 cites W2284022975 @default.
- W2892950114 cites W2319667657 @default.
- W2892950114 cites W2338032892 @default.
- W2892950114 cites W2342215281 @default.
- W2892950114 cites W2404444008 @default.
- W2892950114 cites W2517007394 @default.
- W2892950114 cites W2590873013 @default.
- W2892950114 cites W2591897715 @default.
- W2892950114 cites W2790031505 @default.
- W2892950114 cites W4256451862 @default.
- W2892950114 cites W4367329910 @default.
- W2892950114 cites W618580197 @default.
- W2892950114 cites W65706799 @default.
- W2892950114 cites W804269427 @default.
- W2892950114 doi "https://doi.org/10.1186/s40663-018-0154-y" @default.
- W2892950114 hasPublicationYear "2018" @default.
- W2892950114 type Work @default.
- W2892950114 sameAs 2892950114 @default.
- W2892950114 citedByCount "28" @default.
- W2892950114 countsByYear W28929501142019 @default.
- W2892950114 countsByYear W28929501142020 @default.
- W2892950114 countsByYear W28929501142021 @default.
- W2892950114 countsByYear W28929501142022 @default.
- W2892950114 countsByYear W28929501142023 @default.
- W2892950114 crossrefType "journal-article" @default.
- W2892950114 hasAuthorship W2892950114A5015789316 @default.
- W2892950114 hasAuthorship W2892950114A5022267610 @default.
- W2892950114 hasAuthorship W2892950114A5029648289 @default.
- W2892950114 hasAuthorship W2892950114A5046691388 @default.
- W2892950114 hasAuthorship W2892950114A5051939691 @default.
- W2892950114 hasAuthorship W2892950114A5053554342 @default.
- W2892950114 hasAuthorship W2892950114A5065878898 @default.
- W2892950114 hasAuthorship W2892950114A5072012052 @default.
- W2892950114 hasAuthorship W2892950114A5082128518 @default.
- W2892950114 hasBestOaLocation W28929501141 @default.
- W2892950114 hasConcept C103017160 @default.
- W2892950114 hasConcept C115540264 @default.
- W2892950114 hasConcept C128758860 @default.
- W2892950114 hasConcept C133446333 @default.
- W2892950114 hasConcept C142796444 @default.