Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892954861> ?p ?o ?g. }
- W2892954861 endingPage "2446" @default.
- W2892954861 startingPage "2437" @default.
- W2892954861 abstract "Metal-organic frameworks (MOFs) and porous coordination polymers (PCPs) have been well-recognized as emerging porous materials that afford highly tailorable and well-defined nanoporous structures with three-dimensional lattices. Because of their microporous nature, MOFs can accommodate small molecules in their lattice structure, thus discriminating them on the basis of their size and physical properties and enabling their separation even in the gas phase. Such characteristics of MOFs have attracted significant attention in recent years for diverse applications and have ignited a worldwide race toward their development in both academic and industrial fields. Most recently, new challenges in porous materials science demand processable liquid, melt, and amorphous forms of MOFs. This trend will provide a new fundamental class of microporous materials for further widespread applications in many fields. In particular, the application of flexible membranes for gas separation is expected as an efficient solution to tackle current energy-intensive issues. To date, amorphous MOFs have been prepared in a top-down approach by the introduction of disorder into the parent frameworks. However, this new paradigm is still in its infancy with respect to the rational design principles that need to be developed for any approach that may include bottom-up synthesis of porous soft materials. Herein we describe recent progress in bottom-up modular approaches for the synthesis of porous, processable MOF-based materials, wherein metal-organic cages (MOCs), alternatively called metal-organic polyhedra (MOPs), are used as modular cavities to build porous soft materials. The outer periphery of a MOP is decorated with polymeric and dendritic side chains to obtain a polymer-grafted MOP, imparting both solution and thermal processability to the MOP cages, which have an inherent nanocavity along with high tailorability analogous to MOFs. Well-ordered MOP assemblies can be designed to obtain phases ranging from crystals to liquid crystals, allowing the fabrication of flexible free-standing sheets with preservation of the long-range ordering of MOPs. Furthermore, future prospects of the modular design for porous soft materials are provided with the anticipation that the bottom-up design will combine porous materials and soft matter sciences, leading to the discovery and development of many unexplored new materials and devices such as MOF-based self-healing membranes possessing well-defined nanochannels. The macroscopic alignment of channels can be controlled by external factors, including electric and magnetic fields, external forces, and modified surfaces (templating and patterning), which are conventionally used for engineering of soft materials." @default.
- W2892954861 created "2018-10-05" @default.
- W2892954861 creator A5009001191 @default.
- W2892954861 creator A5028281315 @default.
- W2892954861 date "2018-09-25" @default.
- W2892954861 modified "2023-10-17" @default.
- W2892954861 title "Modular Design of Porous Soft Materials via Self-Organization of Metal–Organic Cages" @default.
- W2892954861 cites W1876006411 @default.
- W2892954861 cites W1964920190 @default.
- W2892954861 cites W1992576234 @default.
- W2892954861 cites W1999908724 @default.
- W2892954861 cites W1999937609 @default.
- W2892954861 cites W2020114290 @default.
- W2892954861 cites W2033059293 @default.
- W2892954861 cites W2051980016 @default.
- W2892954861 cites W2056159647 @default.
- W2892954861 cites W2075276828 @default.
- W2892954861 cites W2109108239 @default.
- W2892954861 cites W2110668009 @default.
- W2892954861 cites W2110863641 @default.
- W2892954861 cites W2115764422 @default.
- W2892954861 cites W2116007269 @default.
- W2892954861 cites W2127316035 @default.
- W2892954861 cites W2142699453 @default.
- W2892954861 cites W2148931401 @default.
- W2892954861 cites W2149934794 @default.
- W2892954861 cites W2207880418 @default.
- W2892954861 cites W2219757807 @default.
- W2892954861 cites W2286179543 @default.
- W2892954861 cites W2325932076 @default.
- W2892954861 cites W2333263273 @default.
- W2892954861 cites W2334282121 @default.
- W2892954861 cites W2344835168 @default.
- W2892954861 cites W2463604077 @default.
- W2892954861 cites W2468089184 @default.
- W2892954861 cites W2471929598 @default.
- W2892954861 cites W2499329905 @default.
- W2892954861 cites W2531565739 @default.
- W2892954861 cites W2559899990 @default.
- W2892954861 cites W2560336315 @default.
- W2892954861 cites W2592142996 @default.
- W2892954861 cites W2603251000 @default.
- W2892954861 cites W2652438528 @default.
- W2892954861 cites W2734963144 @default.
- W2892954861 cites W2767830291 @default.
- W2892954861 cites W2780865625 @default.
- W2892954861 cites W2789737443 @default.
- W2892954861 cites W2791200224 @default.
- W2892954861 cites W2801785525 @default.
- W2892954861 cites W2804544761 @default.
- W2892954861 cites W2808817350 @default.
- W2892954861 cites W2884331733 @default.
- W2892954861 cites W3099886861 @default.
- W2892954861 doi "https://doi.org/10.1021/acs.accounts.8b00361" @default.
- W2892954861 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30252435" @default.
- W2892954861 hasPublicationYear "2018" @default.
- W2892954861 type Work @default.
- W2892954861 sameAs 2892954861 @default.
- W2892954861 citedByCount "120" @default.
- W2892954861 countsByYear W28929548612019 @default.
- W2892954861 countsByYear W28929548612020 @default.
- W2892954861 countsByYear W28929548612021 @default.
- W2892954861 countsByYear W28929548612022 @default.
- W2892954861 countsByYear W28929548612023 @default.
- W2892954861 crossrefType "journal-article" @default.
- W2892954861 hasAuthorship W2892954861A5009001191 @default.
- W2892954861 hasAuthorship W2892954861A5028281315 @default.
- W2892954861 hasConcept C101468663 @default.
- W2892954861 hasConcept C105569014 @default.
- W2892954861 hasConcept C111919701 @default.
- W2892954861 hasConcept C150394285 @default.
- W2892954861 hasConcept C159985019 @default.
- W2892954861 hasConcept C171250308 @default.
- W2892954861 hasConcept C178790620 @default.
- W2892954861 hasConcept C179366358 @default.
- W2892954861 hasConcept C18411161 @default.
- W2892954861 hasConcept C185592680 @default.
- W2892954861 hasConcept C192562407 @default.
- W2892954861 hasConcept C41008148 @default.
- W2892954861 hasConcept C41625074 @default.
- W2892954861 hasConcept C48940184 @default.
- W2892954861 hasConcept C55493867 @default.
- W2892954861 hasConcept C56052488 @default.
- W2892954861 hasConcept C6648577 @default.
- W2892954861 hasConcept C86381522 @default.
- W2892954861 hasConceptScore W2892954861C101468663 @default.
- W2892954861 hasConceptScore W2892954861C105569014 @default.
- W2892954861 hasConceptScore W2892954861C111919701 @default.
- W2892954861 hasConceptScore W2892954861C150394285 @default.
- W2892954861 hasConceptScore W2892954861C159985019 @default.
- W2892954861 hasConceptScore W2892954861C171250308 @default.
- W2892954861 hasConceptScore W2892954861C178790620 @default.
- W2892954861 hasConceptScore W2892954861C179366358 @default.
- W2892954861 hasConceptScore W2892954861C18411161 @default.
- W2892954861 hasConceptScore W2892954861C185592680 @default.
- W2892954861 hasConceptScore W2892954861C192562407 @default.
- W2892954861 hasConceptScore W2892954861C41008148 @default.
- W2892954861 hasConceptScore W2892954861C41625074 @default.