Matches in SemOpenAlex for { <https://semopenalex.org/work/W2892990172> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2892990172 abstract "In our previous paper, viewing $D^b(K(l))$ as a non-commutative curve, where $K(l)$ is the Kronecker quiver with $l$-arrows, we introduced categorical invariants via counting of non-commutative curves. Roughly, these invariants are sets of subcategories in a given category and their quotients. The non-commutative curve-counting invariants are obtained by restricting the subcategories to be equivalent to $D^b(K(l))$. The general definition defines much larger class of invariants and many of them behave properly with respect to fully faithful functors. Here, after recalling the definition, we focus on examples and extend our studies beyond counting. We enrich our invariants with structures: the inclusion of subcategories makes them partially ordered sets, and considering semi-orthogonal pairs of subcategories as edges amount to directed graphs. In addition to computing the non-commutative curve-counting invariants in $D^b(Q)$ for two affine quivers, for $ A_n$ and $D_4$ we derive formulas for counting of the subcategories of type $D^b(A_k)$ in $D^b(A_n)$, whereas for the two affine quivers and for $D_4$ we determine and count all generated by an exceptional collection subcategories. Estimating the numbers counting non-commutative curves in $D^b({mathbb P}^2)$ modulo group action we prove finiteness and that an exact determining of these numbers leads to proving (or disproving) of Markov conjecture. Regarding the mentioned structure of a partially ordered set we initiate intersection theory of non-commutative curves. Via the structure of a directed graph we build an analogue to the classical curve complex used in Teichmueller and Thurston theory. The paper contains many pictures of graphs and presents an approach to Markov Conjecture via counting of subgraphs in a graph associated with $D^b(P^2)$. Some of the results proved here were announced in the previous work." @default.
- W2892990172 created "2018-10-05" @default.
- W2892990172 creator A5067549542 @default.
- W2892990172 creator A5085039423 @default.
- W2892990172 date "2018-05-01" @default.
- W2892990172 modified "2023-09-27" @default.
- W2892990172 title "Non-commutative counting invariants and curve complexes." @default.
- W2892990172 cites W1595937157 @default.
- W2892990172 cites W1993651001 @default.
- W2892990172 cites W2006810995 @default.
- W2892990172 cites W2043274582 @default.
- W2892990172 cites W2077881605 @default.
- W2892990172 cites W2963402595 @default.
- W2892990172 cites W3007083810 @default.
- W2892990172 hasPublicationYear "2018" @default.
- W2892990172 type Work @default.
- W2892990172 sameAs 2892990172 @default.
- W2892990172 citedByCount "1" @default.
- W2892990172 countsByYear W28929901722019 @default.
- W2892990172 crossrefType "posted-content" @default.
- W2892990172 hasAuthorship W2892990172A5067549542 @default.
- W2892990172 hasAuthorship W2892990172A5085039423 @default.
- W2892990172 hasConcept C114614502 @default.
- W2892990172 hasConcept C118615104 @default.
- W2892990172 hasConcept C156772000 @default.
- W2892990172 hasConcept C168310172 @default.
- W2892990172 hasConcept C183778304 @default.
- W2892990172 hasConcept C202444582 @default.
- W2892990172 hasConcept C33923547 @default.
- W2892990172 hasConcept C54732982 @default.
- W2892990172 hasConcept C92757383 @default.
- W2892990172 hasConceptScore W2892990172C114614502 @default.
- W2892990172 hasConceptScore W2892990172C118615104 @default.
- W2892990172 hasConceptScore W2892990172C156772000 @default.
- W2892990172 hasConceptScore W2892990172C168310172 @default.
- W2892990172 hasConceptScore W2892990172C183778304 @default.
- W2892990172 hasConceptScore W2892990172C202444582 @default.
- W2892990172 hasConceptScore W2892990172C33923547 @default.
- W2892990172 hasConceptScore W2892990172C54732982 @default.
- W2892990172 hasConceptScore W2892990172C92757383 @default.
- W2892990172 hasLocation W28929901721 @default.
- W2892990172 hasOpenAccess W2892990172 @default.
- W2892990172 hasPrimaryLocation W28929901721 @default.
- W2892990172 hasRelatedWork W140277042 @default.
- W2892990172 hasRelatedWork W1650977650 @default.
- W2892990172 hasRelatedWork W1669987899 @default.
- W2892990172 hasRelatedWork W1747843991 @default.
- W2892990172 hasRelatedWork W2016524584 @default.
- W2892990172 hasRelatedWork W2077428997 @default.
- W2892990172 hasRelatedWork W2093018505 @default.
- W2892990172 hasRelatedWork W2500608695 @default.
- W2892990172 hasRelatedWork W2800861122 @default.
- W2892990172 hasRelatedWork W2892078274 @default.
- W2892990172 hasRelatedWork W2900751469 @default.
- W2892990172 hasRelatedWork W2906812493 @default.
- W2892990172 hasRelatedWork W2908359080 @default.
- W2892990172 hasRelatedWork W2952484762 @default.
- W2892990172 hasRelatedWork W2952828772 @default.
- W2892990172 hasRelatedWork W2964308642 @default.
- W2892990172 hasRelatedWork W3003022823 @default.
- W2892990172 hasRelatedWork W3103681675 @default.
- W2892990172 hasRelatedWork W3162420379 @default.
- W2892990172 hasRelatedWork W3111211481 @default.
- W2892990172 isParatext "false" @default.
- W2892990172 isRetracted "false" @default.
- W2892990172 magId "2892990172" @default.
- W2892990172 workType "article" @default.