Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893007767> ?p ?o ?g. }
- W2893007767 endingPage "515" @default.
- W2893007767 startingPage "505" @default.
- W2893007767 abstract "The volume of accessible geotagged crowdsourced photos has increased. Such data include spatial, temporal, and thematic information on recreation and outdoor activities, thus can be used to quantify the demand for cultural ecosystem services (CES). So far photo content has been analyzed based on user-labeled tags or the manual labeling of photos. Both approaches are challenged with respect to consistency and cost-efficiency, especially for large-scale studies with an enormous volume of photos. In this study, we aim at developing a new method to analyze the content of large volumes of photos and to derive indicators of socio-cultural usage of landscapes. The method uses machine-learning and network analysis to identify clusters of photo content that can be used as an indicator of cultural services provided by landscapes. The approach was applied in the Mulde river basin in Saxony, Germany. All public Flickr photos (n = 12,635) belonging to the basin were tagged by deep convolutional neural networks through a cloud computing platform, Clarifai. The machine-predicted tags were analyzed by a network analysis that leads to nine hierarchical clusters. Those clusters were used to distinguish between photos related to CES (65%) and not related to CES (35%). Among the nine clusters, two clusters were related to CES: ‘landscape aesthetics’ and ‘existence’. This step allowed mapping of different aspects of CES and separation of non-relevant photos from further analysis. We further analyzed the impact of protected areas on the spatial pattern of CES and not-related CES photos. The presence of protected areas had a significant positive impact on the areas with both ‘landscape aesthetics’ and ‘existence’ photos: the total number of days in each mapping unit where at least one photo was taken by a user (‘photo-user-day’) increased with the share of protected areas around the location. The presented approach has shown its potential for reliable mapping of socio-cultural uses of landscapes. It is expected to scale well with large numbers of photos and to be easily transferable to different regions." @default.
- W2893007767 created "2018-10-05" @default.
- W2893007767 creator A5025954365 @default.
- W2893007767 creator A5045450443 @default.
- W2893007767 creator A5054834271 @default.
- W2893007767 creator A5090228932 @default.
- W2893007767 date "2019-01-01" @default.
- W2893007767 modified "2023-10-16" @default.
- W2893007767 title "Mapping cultural ecosystem services 2.0 – Potential and shortcomings from unlabeled crowd sourced images" @default.
- W2893007767 cites W1084343582 @default.
- W2893007767 cites W1634081729 @default.
- W2893007767 cites W1963597573 @default.
- W2893007767 cites W1967665524 @default.
- W2893007767 cites W1970289554 @default.
- W2893007767 cites W1973194472 @default.
- W2893007767 cites W1988187608 @default.
- W2893007767 cites W1990843604 @default.
- W2893007767 cites W2016381774 @default.
- W2893007767 cites W2020340745 @default.
- W2893007767 cites W2026601878 @default.
- W2893007767 cites W2028695285 @default.
- W2893007767 cites W2033590892 @default.
- W2893007767 cites W2036922363 @default.
- W2893007767 cites W2047940964 @default.
- W2893007767 cites W2057561205 @default.
- W2893007767 cites W2060681882 @default.
- W2893007767 cites W2064079885 @default.
- W2893007767 cites W2069516633 @default.
- W2893007767 cites W2079015760 @default.
- W2893007767 cites W2084296691 @default.
- W2893007767 cites W2085865532 @default.
- W2893007767 cites W2086444253 @default.
- W2893007767 cites W2087194317 @default.
- W2893007767 cites W2089458547 @default.
- W2893007767 cites W2095293504 @default.
- W2893007767 cites W2098509290 @default.
- W2893007767 cites W2107583208 @default.
- W2893007767 cites W2121589817 @default.
- W2893007767 cites W2125910575 @default.
- W2893007767 cites W2137349054 @default.
- W2893007767 cites W2145011667 @default.
- W2893007767 cites W2145781056 @default.
- W2893007767 cites W2151936673 @default.
- W2893007767 cites W2156304293 @default.
- W2893007767 cites W2159201721 @default.
- W2893007767 cites W2176950688 @default.
- W2893007767 cites W2177017366 @default.
- W2893007767 cites W2262923216 @default.
- W2893007767 cites W2406231020 @default.
- W2893007767 cites W2465734108 @default.
- W2893007767 cites W2513188429 @default.
- W2893007767 cites W2524966155 @default.
- W2893007767 cites W2527272775 @default.
- W2893007767 cites W2539837849 @default.
- W2893007767 cites W2544171483 @default.
- W2893007767 cites W2562821824 @default.
- W2893007767 cites W2593699006 @default.
- W2893007767 cites W2622826443 @default.
- W2893007767 cites W2754817565 @default.
- W2893007767 cites W3104267360 @default.
- W2893007767 cites W4246020459 @default.
- W2893007767 cites W584756343 @default.
- W2893007767 doi "https://doi.org/10.1016/j.ecolind.2018.08.035" @default.
- W2893007767 hasPublicationYear "2019" @default.
- W2893007767 type Work @default.
- W2893007767 sameAs 2893007767 @default.
- W2893007767 citedByCount "70" @default.
- W2893007767 countsByYear W28930077672019 @default.
- W2893007767 countsByYear W28930077672020 @default.
- W2893007767 countsByYear W28930077672021 @default.
- W2893007767 countsByYear W28930077672022 @default.
- W2893007767 countsByYear W28930077672023 @default.
- W2893007767 crossrefType "journal-article" @default.
- W2893007767 hasAuthorship W2893007767A5025954365 @default.
- W2893007767 hasAuthorship W2893007767A5045450443 @default.
- W2893007767 hasAuthorship W2893007767A5054834271 @default.
- W2893007767 hasAuthorship W2893007767A5090228932 @default.
- W2893007767 hasBestOaLocation W28930077672 @default.
- W2893007767 hasConcept C110269972 @default.
- W2893007767 hasConcept C110872660 @default.
- W2893007767 hasConcept C154945302 @default.
- W2893007767 hasConcept C18903297 @default.
- W2893007767 hasConcept C205649164 @default.
- W2893007767 hasConcept C23123220 @default.
- W2893007767 hasConcept C2776436953 @default.
- W2893007767 hasConcept C2778755073 @default.
- W2893007767 hasConcept C41008148 @default.
- W2893007767 hasConcept C58640448 @default.
- W2893007767 hasConcept C58941895 @default.
- W2893007767 hasConcept C81363708 @default.
- W2893007767 hasConcept C86803240 @default.
- W2893007767 hasConcept C93692415 @default.
- W2893007767 hasConceptScore W2893007767C110269972 @default.
- W2893007767 hasConceptScore W2893007767C110872660 @default.
- W2893007767 hasConceptScore W2893007767C154945302 @default.
- W2893007767 hasConceptScore W2893007767C18903297 @default.
- W2893007767 hasConceptScore W2893007767C205649164 @default.
- W2893007767 hasConceptScore W2893007767C23123220 @default.