Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893009058> ?p ?o ?g. }
- W2893009058 abstract "Although Bayesian variable selection methods have been intensively studied, their routine use in practice has not caught up with their non-Bayesian counterparts such as Lasso, likely due to difficulties in both computations and flexibilities of prior choices. To ease these challenges, we propose the neuronized priors to unify and extend some popular shrinkage priors, such as Laplace, Cauchy, horseshoe, and spike-and-slab priors. A neuronized prior can be written as the product of a Gaussian weight variable and a scale variable transformed from Gaussian via an activation function. Compared with classic spike-and-slab priors, the neuronized priors achieve the same explicit variable selection without employing any latent indicator variables, which results in both more efficient and flexible posterior sampling and more effective posterior modal estimation. Theoretically, we provide specific conditions on the neuronized formulation to achieve the optimal posterior contraction rate, and show that a broadly applicable MCMC algorithm achieves an exponentially fast convergence rate under the neuronized formulation. We also examine various simulated and real data examples and demonstrate that using the neuronization representation is computationally more or comparably efficient than its standard counterpart in all well-known cases. An R package NPrior is provided in the CRAN for using neuronized priors in Bayesian linear regression." @default.
- W2893009058 created "2018-10-05" @default.
- W2893009058 creator A5012820890 @default.
- W2893009058 creator A5037331314 @default.
- W2893009058 date "2018-09-28" @default.
- W2893009058 modified "2023-09-27" @default.
- W2893009058 title "Neuronized Priors for Bayesian Sparse Linear Regression" @default.
- W2893009058 cites W1498436455 @default.
- W2893009058 cites W1558800859 @default.
- W2893009058 cites W160307228 @default.
- W2893009058 cites W1603353793 @default.
- W2893009058 cites W171292237 @default.
- W2893009058 cites W1839576245 @default.
- W2893009058 cites W1878363387 @default.
- W2893009058 cites W1885596477 @default.
- W2893009058 cites W1973594349 @default.
- W2893009058 cites W1976706787 @default.
- W2893009058 cites W1981299323 @default.
- W2893009058 cites W1982508956 @default.
- W2893009058 cites W1982652137 @default.
- W2893009058 cites W1990885553 @default.
- W2893009058 cites W1999974018 @default.
- W2893009058 cites W2007069447 @default.
- W2893009058 cites W2008703230 @default.
- W2893009058 cites W2009985525 @default.
- W2893009058 cites W2011192015 @default.
- W2893009058 cites W2011471859 @default.
- W2893009058 cites W2013718670 @default.
- W2893009058 cites W2017874618 @default.
- W2893009058 cites W2024060531 @default.
- W2893009058 cites W2030399903 @default.
- W2893009058 cites W2033765726 @default.
- W2893009058 cites W2037888022 @default.
- W2893009058 cites W2040870580 @default.
- W2893009058 cites W2053061982 @default.
- W2893009058 cites W2053675401 @default.
- W2893009058 cites W2055025635 @default.
- W2893009058 cites W2056938357 @default.
- W2893009058 cites W2060618829 @default.
- W2893009058 cites W2073412813 @default.
- W2893009058 cites W2074682976 @default.
- W2893009058 cites W2077020715 @default.
- W2893009058 cites W2078950386 @default.
- W2893009058 cites W2082856185 @default.
- W2893009058 cites W2092058109 @default.
- W2893009058 cites W2098601118 @default.
- W2893009058 cites W2099878672 @default.
- W2893009058 cites W2104232463 @default.
- W2893009058 cites W2106706098 @default.
- W2893009058 cites W2109553965 @default.
- W2893009058 cites W2114169935 @default.
- W2893009058 cites W2120875981 @default.
- W2893009058 cites W2120984640 @default.
- W2893009058 cites W2135046866 @default.
- W2893009058 cites W2141273398 @default.
- W2893009058 cites W2142623799 @default.
- W2893009058 cites W2147426468 @default.
- W2893009058 cites W2150149003 @default.
- W2893009058 cites W2151902790 @default.
- W2893009058 cites W2162888823 @default.
- W2893009058 cites W2168175751 @default.
- W2893009058 cites W2170989872 @default.
- W2893009058 cites W2497431972 @default.
- W2893009058 cites W2502245586 @default.
- W2893009058 cites W2524577553 @default.
- W2893009058 cites W2546982352 @default.
- W2893009058 cites W2566065221 @default.
- W2893009058 cites W2776889781 @default.
- W2893009058 cites W2788365376 @default.
- W2893009058 cites W2806706576 @default.
- W2893009058 cites W2901731971 @default.
- W2893009058 cites W2962704566 @default.
- W2893009058 cites W2963047405 @default.
- W2893009058 cites W2963108610 @default.
- W2893009058 cites W3099090856 @default.
- W2893009058 cites W3101685967 @default.
- W2893009058 cites W3104393726 @default.
- W2893009058 cites W3104712019 @default.
- W2893009058 cites W3106275221 @default.
- W2893009058 cites W3106385100 @default.
- W2893009058 cites W3214323364 @default.
- W2893009058 cites W340056678 @default.
- W2893009058 doi "https://doi.org/10.48550/arxiv.1810.00141" @default.
- W2893009058 hasPublicationYear "2018" @default.
- W2893009058 type Work @default.
- W2893009058 sameAs 2893009058 @default.
- W2893009058 citedByCount "2" @default.
- W2893009058 countsByYear W28930090582019 @default.
- W2893009058 countsByYear W28930090582020 @default.
- W2893009058 crossrefType "posted-content" @default.
- W2893009058 hasAuthorship W2893009058A5012820890 @default.
- W2893009058 hasAuthorship W2893009058A5037331314 @default.
- W2893009058 hasBestOaLocation W28930090581 @default.
- W2893009058 hasConcept C107673813 @default.
- W2893009058 hasConcept C111350023 @default.
- W2893009058 hasConcept C11413529 @default.
- W2893009058 hasConcept C121332964 @default.
- W2893009058 hasConcept C126255220 @default.
- W2893009058 hasConcept C136764020 @default.
- W2893009058 hasConcept C154945302 @default.