Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893016462> ?p ?o ?g. }
- W2893016462 endingPage "102" @default.
- W2893016462 startingPage "90" @default.
- W2893016462 abstract "Motivated by the Statistical Learning Theory (SLT), which provides a theoretical framework to ensure when supervised learning algorithms generalize input data, this manuscript relies on the Algorithmic Stability framework to prove learning bounds for the unsupervised concept drift detection on data streams. Based on such proof, we also designed the Plover algorithm to detect drifts using different measure functions, such as Statistical Moments and the Power Spectrum. In this way, the criterion for issuing data changes can also be adapted to better address the target task. From synthetic and real-world scenarios, we observed that each data stream may require a different measure function to identify concept drifts, according to the underlying characteristics of the corresponding application domain. In addition, we discussed about the differences of our approach against others from literature, and showed illustrative results confirming the usefulness of our proposal." @default.
- W2893016462 created "2018-10-05" @default.
- W2893016462 creator A5004602858 @default.
- W2893016462 creator A5028315127 @default.
- W2893016462 creator A5073145218 @default.
- W2893016462 creator A5080970505 @default.
- W2893016462 date "2019-03-01" @default.
- W2893016462 modified "2023-10-15" @default.
- W2893016462 title "On learning guarantees to unsupervised concept drift detection on data streams" @default.
- W2893016462 cites W1569711212 @default.
- W2893016462 cites W1989226476 @default.
- W2893016462 cites W1989329630 @default.
- W2893016462 cites W1992377221 @default.
- W2893016462 cites W1999678910 @default.
- W2893016462 cites W2004585069 @default.
- W2893016462 cites W2046372172 @default.
- W2893016462 cites W2057550598 @default.
- W2893016462 cites W2069701377 @default.
- W2893016462 cites W2090783579 @default.
- W2893016462 cites W2191459971 @default.
- W2893016462 cites W2289490097 @default.
- W2893016462 cites W250393214 @default.
- W2893016462 cites W2554736449 @default.
- W2893016462 cites W2605253252 @default.
- W2893016462 cites W2623618904 @default.
- W2893016462 cites W4233583441 @default.
- W2893016462 cites W4249116379 @default.
- W2893016462 cites W4252713891 @default.
- W2893016462 cites W4255466416 @default.
- W2893016462 cites W641761961 @default.
- W2893016462 doi "https://doi.org/10.1016/j.eswa.2018.08.054" @default.
- W2893016462 hasPublicationYear "2019" @default.
- W2893016462 type Work @default.
- W2893016462 sameAs 2893016462 @default.
- W2893016462 citedByCount "42" @default.
- W2893016462 countsByYear W28930164622019 @default.
- W2893016462 countsByYear W28930164622020 @default.
- W2893016462 countsByYear W28930164622021 @default.
- W2893016462 countsByYear W28930164622022 @default.
- W2893016462 countsByYear W28930164622023 @default.
- W2893016462 crossrefType "journal-article" @default.
- W2893016462 hasAuthorship W2893016462A5004602858 @default.
- W2893016462 hasAuthorship W2893016462A5028315127 @default.
- W2893016462 hasAuthorship W2893016462A5073145218 @default.
- W2893016462 hasAuthorship W2893016462A5080970505 @default.
- W2893016462 hasConcept C112972136 @default.
- W2893016462 hasConcept C119857082 @default.
- W2893016462 hasConcept C12267149 @default.
- W2893016462 hasConcept C124101348 @default.
- W2893016462 hasConcept C134306372 @default.
- W2893016462 hasConcept C14036430 @default.
- W2893016462 hasConcept C154945302 @default.
- W2893016462 hasConcept C162324750 @default.
- W2893016462 hasConcept C187736073 @default.
- W2893016462 hasConcept C2778484313 @default.
- W2893016462 hasConcept C2779915298 @default.
- W2893016462 hasConcept C2780009758 @default.
- W2893016462 hasConcept C2780451532 @default.
- W2893016462 hasConcept C33923547 @default.
- W2893016462 hasConcept C36503486 @default.
- W2893016462 hasConcept C41008148 @default.
- W2893016462 hasConcept C60777511 @default.
- W2893016462 hasConcept C76155785 @default.
- W2893016462 hasConcept C78458016 @default.
- W2893016462 hasConcept C8038995 @default.
- W2893016462 hasConcept C86803240 @default.
- W2893016462 hasConcept C89198739 @default.
- W2893016462 hasConceptScore W2893016462C112972136 @default.
- W2893016462 hasConceptScore W2893016462C119857082 @default.
- W2893016462 hasConceptScore W2893016462C12267149 @default.
- W2893016462 hasConceptScore W2893016462C124101348 @default.
- W2893016462 hasConceptScore W2893016462C134306372 @default.
- W2893016462 hasConceptScore W2893016462C14036430 @default.
- W2893016462 hasConceptScore W2893016462C154945302 @default.
- W2893016462 hasConceptScore W2893016462C162324750 @default.
- W2893016462 hasConceptScore W2893016462C187736073 @default.
- W2893016462 hasConceptScore W2893016462C2778484313 @default.
- W2893016462 hasConceptScore W2893016462C2779915298 @default.
- W2893016462 hasConceptScore W2893016462C2780009758 @default.
- W2893016462 hasConceptScore W2893016462C2780451532 @default.
- W2893016462 hasConceptScore W2893016462C33923547 @default.
- W2893016462 hasConceptScore W2893016462C36503486 @default.
- W2893016462 hasConceptScore W2893016462C41008148 @default.
- W2893016462 hasConceptScore W2893016462C60777511 @default.
- W2893016462 hasConceptScore W2893016462C76155785 @default.
- W2893016462 hasConceptScore W2893016462C78458016 @default.
- W2893016462 hasConceptScore W2893016462C8038995 @default.
- W2893016462 hasConceptScore W2893016462C86803240 @default.
- W2893016462 hasConceptScore W2893016462C89198739 @default.
- W2893016462 hasFunder F4320321091 @default.
- W2893016462 hasFunder F4320322025 @default.
- W2893016462 hasFunder F4320323207 @default.
- W2893016462 hasLocation W28930164621 @default.
- W2893016462 hasLocation W28930164622 @default.
- W2893016462 hasOpenAccess W2893016462 @default.
- W2893016462 hasPrimaryLocation W28930164621 @default.
- W2893016462 hasRelatedWork W1521014365 @default.
- W2893016462 hasRelatedWork W2161835057 @default.