Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893026611> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2893026611 abstract "High dimensional data will cause problems in classification tasks and storage. Hyperspectral image is a 3D image with hundreds of spectrals. A dimensional reduction method is required to solve problem. PCA is a well known and common method for reducing data dimension. However, the standard PCA needs to be extended in order to improve its ability in hyperspectral image classification. From the previous study, PCA have limited capability on extracting information from the spectral in hyperspectral image. In this study, we propose a new method to improve PCA performance: as a feature extraction method and a dimensional reduction method. We have inserted a hidden layer to transform the data into a new dimension and used PCA to extract the information. The experiment was conducted using Indian Pines hyperspectral image which contains 200 spectrals. We also use datasets from UCI repository such as Iris and Seed datasets. The results showed that the proposed method is able to increase the standard PCA performance and it is comparable to Nonlinear PCA." @default.
- W2893026611 created "2018-10-05" @default.
- W2893026611 creator A5031370089 @default.
- W2893026611 creator A5037666948 @default.
- W2893026611 creator A5058432307 @default.
- W2893026611 creator A5066329050 @default.
- W2893026611 creator A5069933043 @default.
- W2893026611 date "2018-05-01" @default.
- W2893026611 modified "2023-09-28" @default.
- W2893026611 title "Improving Principal Component Analysis Performance for Reducing Spectral Dimension in Hyperspectral Image Classification" @default.
- W2893026611 cites W1677182931 @default.
- W2893026611 cites W1710978090 @default.
- W2893026611 cites W1998808035 @default.
- W2893026611 cites W2026131661 @default.
- W2893026611 cites W2042184006 @default.
- W2893026611 cites W2067869061 @default.
- W2893026611 cites W2068561554 @default.
- W2893026611 cites W2090424610 @default.
- W2893026611 cites W2098057602 @default.
- W2893026611 cites W2100495367 @default.
- W2893026611 cites W2103956991 @default.
- W2893026611 cites W2111072639 @default.
- W2893026611 cites W2144151128 @default.
- W2893026611 cites W2152057649 @default.
- W2893026611 cites W2157621128 @default.
- W2893026611 cites W2217442075 @default.
- W2893026611 cites W2301541953 @default.
- W2893026611 cites W2317354861 @default.
- W2893026611 cites W2593528311 @default.
- W2893026611 cites W2596893179 @default.
- W2893026611 cites W2741133309 @default.
- W2893026611 cites W2786691623 @default.
- W2893026611 cites W2787261406 @default.
- W2893026611 cites W3104101404 @default.
- W2893026611 doi "https://doi.org/10.1109/iwbis.2018.8471705" @default.
- W2893026611 hasPublicationYear "2018" @default.
- W2893026611 type Work @default.
- W2893026611 sameAs 2893026611 @default.
- W2893026611 citedByCount "1" @default.
- W2893026611 countsByYear W28930266112022 @default.
- W2893026611 crossrefType "proceedings-article" @default.
- W2893026611 hasAuthorship W2893026611A5031370089 @default.
- W2893026611 hasAuthorship W2893026611A5037666948 @default.
- W2893026611 hasAuthorship W2893026611A5058432307 @default.
- W2893026611 hasAuthorship W2893026611A5066329050 @default.
- W2893026611 hasAuthorship W2893026611A5069933043 @default.
- W2893026611 hasConcept C115961682 @default.
- W2893026611 hasConcept C153180895 @default.
- W2893026611 hasConcept C154945302 @default.
- W2893026611 hasConcept C159078339 @default.
- W2893026611 hasConcept C202444582 @default.
- W2893026611 hasConcept C27438332 @default.
- W2893026611 hasConcept C33676613 @default.
- W2893026611 hasConcept C33923547 @default.
- W2893026611 hasConcept C41008148 @default.
- W2893026611 hasConcept C52622490 @default.
- W2893026611 hasConcept C70518039 @default.
- W2893026611 hasConceptScore W2893026611C115961682 @default.
- W2893026611 hasConceptScore W2893026611C153180895 @default.
- W2893026611 hasConceptScore W2893026611C154945302 @default.
- W2893026611 hasConceptScore W2893026611C159078339 @default.
- W2893026611 hasConceptScore W2893026611C202444582 @default.
- W2893026611 hasConceptScore W2893026611C27438332 @default.
- W2893026611 hasConceptScore W2893026611C33676613 @default.
- W2893026611 hasConceptScore W2893026611C33923547 @default.
- W2893026611 hasConceptScore W2893026611C41008148 @default.
- W2893026611 hasConceptScore W2893026611C52622490 @default.
- W2893026611 hasConceptScore W2893026611C70518039 @default.
- W2893026611 hasLocation W28930266111 @default.
- W2893026611 hasOpenAccess W2893026611 @default.
- W2893026611 hasPrimaryLocation W28930266111 @default.
- W2893026611 hasRelatedWork W2000539021 @default.
- W2893026611 hasRelatedWork W2000895242 @default.
- W2893026611 hasRelatedWork W2064987453 @default.
- W2893026611 hasRelatedWork W2108004998 @default.
- W2893026611 hasRelatedWork W2112656425 @default.
- W2893026611 hasRelatedWork W2132581010 @default.
- W2893026611 hasRelatedWork W2142339246 @default.
- W2893026611 hasRelatedWork W2155131749 @default.
- W2893026611 hasRelatedWork W2164993107 @default.
- W2893026611 hasRelatedWork W2351969825 @default.
- W2893026611 hasRelatedWork W2361375463 @default.
- W2893026611 hasRelatedWork W2609118866 @default.
- W2893026611 hasRelatedWork W2758507810 @default.
- W2893026611 hasRelatedWork W2765997769 @default.
- W2893026611 hasRelatedWork W2772564119 @default.
- W2893026611 hasRelatedWork W2773530573 @default.
- W2893026611 hasRelatedWork W2953181031 @default.
- W2893026611 hasRelatedWork W2968354592 @default.
- W2893026611 hasRelatedWork W3029912995 @default.
- W2893026611 hasRelatedWork W3116511560 @default.
- W2893026611 isParatext "false" @default.
- W2893026611 isRetracted "false" @default.
- W2893026611 magId "2893026611" @default.
- W2893026611 workType "article" @default.