Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893033360> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2893033360 endingPage "19" @default.
- W2893033360 startingPage "1" @default.
- W2893033360 abstract "The estimation of power in two-level models used to analyze data that are hierarchically structured is particularly complex because the outcome contains variance at two levels that is regressed on predictors at two levels. Methods for the estimation of power in two-level models have been based on formulas and Monte Carlo simulation. We provide a hands-on tutorial illustrating how a priori and post hoc power analyses for the most frequently used two-level models are conducted. We describe how a population model for the power analysis can be specified by using standardized input parameters and how the power analysis is implemented in SIMR, a very flexible power estimation method based on Monte Carlo simulation. Finally, we provide case-sensitive rules of thumb for deriving sufficient sample sizes as well as minimum detectable effect sizes that yield a power ≥ .80 for the effects and input parameters most frequently analyzed by psychologists. For medium variance components, the results indicate that with lower level (L1) sample sizes up to 30 and higher level (L2) sample sizes up to 200, medium and large fixed effects can be detected. However, small L2 direct- or cross-level interaction effects cannot be detected with up to 200 clusters. The tutorial and guidelines should be of help to researchers dealing with multilevel study designs such as individuals clustered within groups or repeated measurements clustered within individuals. (PsycINFO Database Record (c) 2019 APA, all rights reserved)." @default.
- W2893033360 created "2018-10-05" @default.
- W2893033360 creator A5004541631 @default.
- W2893033360 creator A5046492647 @default.
- W2893033360 date "2019-02-01" @default.
- W2893033360 modified "2023-10-18" @default.
- W2893033360 title "Statistical power in two-level models: A tutorial based on Monte Carlo simulation." @default.
- W2893033360 doi "https://doi.org/10.1037/met0000195" @default.
- W2893033360 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30265048" @default.
- W2893033360 hasPublicationYear "2019" @default.
- W2893033360 type Work @default.
- W2893033360 sameAs 2893033360 @default.
- W2893033360 citedByCount "218" @default.
- W2893033360 countsByYear W28930333602018 @default.
- W2893033360 countsByYear W28930333602019 @default.
- W2893033360 countsByYear W28930333602020 @default.
- W2893033360 countsByYear W28930333602021 @default.
- W2893033360 countsByYear W28930333602022 @default.
- W2893033360 countsByYear W28930333602023 @default.
- W2893033360 crossrefType "journal-article" @default.
- W2893033360 hasAuthorship W2893033360A5004541631 @default.
- W2893033360 hasAuthorship W2893033360A5046492647 @default.
- W2893033360 hasConcept C105795698 @default.
- W2893033360 hasConcept C111472728 @default.
- W2893033360 hasConcept C11413529 @default.
- W2893033360 hasConcept C121332964 @default.
- W2893033360 hasConcept C121955636 @default.
- W2893033360 hasConcept C129848803 @default.
- W2893033360 hasConcept C138885662 @default.
- W2893033360 hasConcept C144133560 @default.
- W2893033360 hasConcept C163258240 @default.
- W2893033360 hasConcept C178489894 @default.
- W2893033360 hasConcept C185429906 @default.
- W2893033360 hasConcept C185592680 @default.
- W2893033360 hasConcept C19499675 @default.
- W2893033360 hasConcept C196083921 @default.
- W2893033360 hasConcept C198531522 @default.
- W2893033360 hasConcept C2985420695 @default.
- W2893033360 hasConcept C33923547 @default.
- W2893033360 hasConcept C41008148 @default.
- W2893033360 hasConcept C43617362 @default.
- W2893033360 hasConcept C53059260 @default.
- W2893033360 hasConcept C62520636 @default.
- W2893033360 hasConcept C71743495 @default.
- W2893033360 hasConcept C75553542 @default.
- W2893033360 hasConcept C89246107 @default.
- W2893033360 hasConcept C96608239 @default.
- W2893033360 hasConceptScore W2893033360C105795698 @default.
- W2893033360 hasConceptScore W2893033360C111472728 @default.
- W2893033360 hasConceptScore W2893033360C11413529 @default.
- W2893033360 hasConceptScore W2893033360C121332964 @default.
- W2893033360 hasConceptScore W2893033360C121955636 @default.
- W2893033360 hasConceptScore W2893033360C129848803 @default.
- W2893033360 hasConceptScore W2893033360C138885662 @default.
- W2893033360 hasConceptScore W2893033360C144133560 @default.
- W2893033360 hasConceptScore W2893033360C163258240 @default.
- W2893033360 hasConceptScore W2893033360C178489894 @default.
- W2893033360 hasConceptScore W2893033360C185429906 @default.
- W2893033360 hasConceptScore W2893033360C185592680 @default.
- W2893033360 hasConceptScore W2893033360C19499675 @default.
- W2893033360 hasConceptScore W2893033360C196083921 @default.
- W2893033360 hasConceptScore W2893033360C198531522 @default.
- W2893033360 hasConceptScore W2893033360C2985420695 @default.
- W2893033360 hasConceptScore W2893033360C33923547 @default.
- W2893033360 hasConceptScore W2893033360C41008148 @default.
- W2893033360 hasConceptScore W2893033360C43617362 @default.
- W2893033360 hasConceptScore W2893033360C53059260 @default.
- W2893033360 hasConceptScore W2893033360C62520636 @default.
- W2893033360 hasConceptScore W2893033360C71743495 @default.
- W2893033360 hasConceptScore W2893033360C75553542 @default.
- W2893033360 hasConceptScore W2893033360C89246107 @default.
- W2893033360 hasConceptScore W2893033360C96608239 @default.
- W2893033360 hasIssue "1" @default.
- W2893033360 hasLocation W28930333601 @default.
- W2893033360 hasLocation W28930333602 @default.
- W2893033360 hasOpenAccess W2893033360 @default.
- W2893033360 hasPrimaryLocation W28930333601 @default.
- W2893033360 hasRelatedWork W1570799877 @default.
- W2893033360 hasRelatedWork W1967252112 @default.
- W2893033360 hasRelatedWork W1981255018 @default.
- W2893033360 hasRelatedWork W2001468958 @default.
- W2893033360 hasRelatedWork W2061707367 @default.
- W2893033360 hasRelatedWork W3121319945 @default.
- W2893033360 hasRelatedWork W331652251 @default.
- W2893033360 hasRelatedWork W4200595819 @default.
- W2893033360 hasRelatedWork W4213230142 @default.
- W2893033360 hasRelatedWork W567739382 @default.
- W2893033360 hasVolume "24" @default.
- W2893033360 isParatext "false" @default.
- W2893033360 isRetracted "false" @default.
- W2893033360 magId "2893033360" @default.
- W2893033360 workType "article" @default.