Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893041993> ?p ?o ?g. }
- W2893041993 endingPage "175" @default.
- W2893041993 startingPage "151" @default.
- W2893041993 abstract "In this work we study convergence properties of sparse polynomial approximations for a class of affine parametric saddle point problems, including the Stokes equations for viscous incompressible flow, mixed formulation of diffusion equations for groundwater flow, time-harmonic Maxwell equations for electromagnetics, etc. Due to the lack of knowledge or intrinsic randomness, the (viscosity, diffusivity, permeability, permittivity, etc.) coefficients of such problems are uncertain and can often be represented or approximated by high- or countably infinite-dimensional random parameters equipped with suitable probability distributions, and the coefficients affinely depend on a series of either globally or locally supported basis functions, e.g., Karhunen–Loève expansion, piecewise polynomials, or adaptive wavelet approximations. We consider sparse polynomial approximations of the parametric solutions, in particular sparse Taylor approximations, and study their convergence properties for these parametric problems. Under suitable sparsity assumptions on the parametrization of the random coefficients, we show the algebraic convergence rates O(N−r) for the sparse polynomial approximations of the parametric solutions based on the results for affine parametric elliptic PDEs (Cohen, A. et al.: Anal. Appl. 9, 11–47, 2011), (Bachmayr, M., et al.: ESAIM Math. Model. Numer. Anal. 51, 321–339, 2017), (Cohen, A., DeVore, R.: Acta Numer. 24, 1–159, 2015), (Chkifa, A., et al.: J. Math. Pures Appl. 103, 400–428, 2015), (Chkifa, A., et al.: ESAIM Math. Model. Numer. Anal. 47, 253–280, 2013), (Cohen, A., Migliorati, G.: Contemp. Comput. Math., 233–282, 2018), with the rate r depending only on a sparsity parameter in the parametrization, not on the number of active parameter dimensions or the number of polynomial terms N. We note that parametric saddle point problems were considered in (Cohen, A., DeVore, R.: Acta Numer. 24, 1–159, 2015, Section 2.2) with the anticipation that the same results on the approximation of the solution map obtained for elliptic PDEs can be extended to more general saddle point problems. In this paper, we consider a general formulation of saddle point problems, different from that presented in (Cohen, A., DeVore, R.: Acta Numer. 24, 1–159, 2015, Section 2.2), and obtain convergence rates for the two variables, e.g., velocity and pressure in Stokes equations, which are different for the case of locally supported basis functions." @default.
- W2893041993 created "2018-10-05" @default.
- W2893041993 creator A5013652689 @default.
- W2893041993 creator A5049331711 @default.
- W2893041993 date "2022-09-19" @default.
- W2893041993 modified "2023-10-16" @default.
- W2893041993 title "Sparse Polynomial Approximations for Affine Parametric Saddle Point Problems" @default.
- W2893041993 cites W1472566082 @default.
- W2893041993 cites W1553133944 @default.
- W2893041993 cites W1558333494 @default.
- W2893041993 cites W1595193945 @default.
- W2893041993 cites W1783037367 @default.
- W2893041993 cites W1791067423 @default.
- W2893041993 cites W1958282778 @default.
- W2893041993 cites W1970476229 @default.
- W2893041993 cites W1982944750 @default.
- W2893041993 cites W1983156129 @default.
- W2893041993 cites W2002242880 @default.
- W2893041993 cites W2005606401 @default.
- W2893041993 cites W2018159038 @default.
- W2893041993 cites W2021411519 @default.
- W2893041993 cites W2030470940 @default.
- W2893041993 cites W2039055345 @default.
- W2893041993 cites W2041509689 @default.
- W2893041993 cites W2049222546 @default.
- W2893041993 cites W2055460625 @default.
- W2893041993 cites W2056558085 @default.
- W2893041993 cites W2062993069 @default.
- W2893041993 cites W2083845086 @default.
- W2893041993 cites W2085298086 @default.
- W2893041993 cites W2086684904 @default.
- W2893041993 cites W2117188967 @default.
- W2893041993 cites W2117302185 @default.
- W2893041993 cites W2122080931 @default.
- W2893041993 cites W2135459060 @default.
- W2893041993 cites W2143591652 @default.
- W2893041993 cites W2148262800 @default.
- W2893041993 cites W2226462370 @default.
- W2893041993 cites W2581598540 @default.
- W2893041993 cites W2606283473 @default.
- W2893041993 cites W2671679770 @default.
- W2893041993 cites W2685500084 @default.
- W2893041993 cites W2747778728 @default.
- W2893041993 cites W2883486956 @default.
- W2893041993 cites W2949924726 @default.
- W2893041993 cites W2962840746 @default.
- W2893041993 cites W2963062618 @default.
- W2893041993 cites W2963494703 @default.
- W2893041993 cites W2963798430 @default.
- W2893041993 cites W2999108449 @default.
- W2893041993 cites W3021293439 @default.
- W2893041993 cites W3104183394 @default.
- W2893041993 cites W3167031531 @default.
- W2893041993 cites W3205912750 @default.
- W2893041993 cites W4247369629 @default.
- W2893041993 cites W4300079339 @default.
- W2893041993 cites W592911714 @default.
- W2893041993 doi "https://doi.org/10.1007/s10013-022-00584-1" @default.
- W2893041993 hasPublicationYear "2022" @default.
- W2893041993 type Work @default.
- W2893041993 sameAs 2893041993 @default.
- W2893041993 citedByCount "1" @default.
- W2893041993 countsByYear W28930419932019 @default.
- W2893041993 crossrefType "journal-article" @default.
- W2893041993 hasAuthorship W2893041993A5013652689 @default.
- W2893041993 hasAuthorship W2893041993A5049331711 @default.
- W2893041993 hasBestOaLocation W28930419932 @default.
- W2893041993 hasConcept C105795698 @default.
- W2893041993 hasConcept C117251300 @default.
- W2893041993 hasConcept C134306372 @default.
- W2893041993 hasConcept C164660894 @default.
- W2893041993 hasConcept C202444582 @default.
- W2893041993 hasConcept C2524010 @default.
- W2893041993 hasConcept C2681867 @default.
- W2893041993 hasConcept C28826006 @default.
- W2893041993 hasConcept C33923547 @default.
- W2893041993 hasConcept C90119067 @default.
- W2893041993 hasConcept C92757383 @default.
- W2893041993 hasConceptScore W2893041993C105795698 @default.
- W2893041993 hasConceptScore W2893041993C117251300 @default.
- W2893041993 hasConceptScore W2893041993C134306372 @default.
- W2893041993 hasConceptScore W2893041993C164660894 @default.
- W2893041993 hasConceptScore W2893041993C202444582 @default.
- W2893041993 hasConceptScore W2893041993C2524010 @default.
- W2893041993 hasConceptScore W2893041993C2681867 @default.
- W2893041993 hasConceptScore W2893041993C28826006 @default.
- W2893041993 hasConceptScore W2893041993C33923547 @default.
- W2893041993 hasConceptScore W2893041993C90119067 @default.
- W2893041993 hasConceptScore W2893041993C92757383 @default.
- W2893041993 hasIssue "1" @default.
- W2893041993 hasLocation W28930419931 @default.
- W2893041993 hasLocation W28930419932 @default.
- W2893041993 hasOpenAccess W2893041993 @default.
- W2893041993 hasPrimaryLocation W28930419931 @default.
- W2893041993 hasRelatedWork W1998557840 @default.
- W2893041993 hasRelatedWork W2072084563 @default.
- W2893041993 hasRelatedWork W2075283588 @default.
- W2893041993 hasRelatedWork W2085485627 @default.