Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893043792> ?p ?o ?g. }
- W2893043792 endingPage "68" @default.
- W2893043792 startingPage "55" @default.
- W2893043792 abstract "A practical atmospheric correction algorithm, called Coupled Moderate Products for Atmospheric Correction (CMPAC), was developed and implemented for the Multispectral Camera (MUX) on-board the China-Brazil Earth Resources Satellite (CBERS-4). This algorithm uses a scene-based processing and sliding window technique to derive MUX surface reflectance (SR) at continental scale. Unlike other optical sensors, MUX instrument imposes constraints for atmospheric correction due to the absence of spectral bands for aerosol estimation from imagery itself. To overcome this limitation, the proposed algorithm performs a further processing of atmospheric products from Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors as input parameters for radiative transfer calculations. The success of CMPAC algorithm was fully assessed and confirmed by comparison of MUX SR data with the Landsat-8 OLI Level-2 and Aerosol Robotic Network (AERONET)-derived SR products. The spectral adjustment was performed to compensate for the differences of relative spectral response between MUX and OLI sensors. The results show that MUX SR values are fairly similar to operational Landsat-8 SR products (mean difference < 0.0062, expressed in reflectance). There is a slight underestimation of MUX SR compared to OLI product (except the NIR band), but the error metrics are typically low and scattered points are around the line 1:1. These results suggest the potential of combining these datasets (MUX and OLI) for quantitative studies. Further, the robust agreement of MUX and AERONET-derived SR values emphasizes the quality of moderate atmospheric products as input parameters in this application, with root-mean-square deviation lower than 0.0047. These findings confirm that (i) CMPAC is a suitable tool for estimating surface reflectance of CBERS MUX data, and (ii) ancillary products support the application of atmospheric correction by filling the gap of atmospheric information. The uncertainties of atmospheric products, negligence of the bidirectional effects, and two aerosol models were also identified as a limitation. Finally, this study presents a framework basis for atmospheric correction of CBERS-4 MUX images. The utility of CBERS data comes from its use, and this new product enables the quantitative remote sensing for land monitoring and environmental assessment at 20 m spatial resolution." @default.
- W2893043792 created "2018-10-05" @default.
- W2893043792 creator A5005808403 @default.
- W2893043792 creator A5034350662 @default.
- W2893043792 creator A5047123132 @default.
- W2893043792 creator A5062060623 @default.
- W2893043792 creator A5065574556 @default.
- W2893043792 creator A5071693218 @default.
- W2893043792 creator A5084735063 @default.
- W2893043792 date "2018-12-01" @default.
- W2893043792 modified "2023-09-30" @default.
- W2893043792 title "Continental-scale surface reflectance product from CBERS-4 MUX data: Assessment of atmospheric correction method using coincident Landsat observations" @default.
- W2893043792 cites W1268481983 @default.
- W2893043792 cites W1606767976 @default.
- W2893043792 cites W1969139274 @default.
- W2893043792 cites W1990877240 @default.
- W2893043792 cites W1993332713 @default.
- W2893043792 cites W1997730840 @default.
- W2893043792 cites W1997888672 @default.
- W2893043792 cites W2001666814 @default.
- W2893043792 cites W2024103932 @default.
- W2893043792 cites W2024689500 @default.
- W2893043792 cites W2031798397 @default.
- W2893043792 cites W2032481287 @default.
- W2893043792 cites W2048269636 @default.
- W2893043792 cites W2049201599 @default.
- W2893043792 cites W2050250373 @default.
- W2893043792 cites W2051481444 @default.
- W2893043792 cites W2058388268 @default.
- W2893043792 cites W2058675945 @default.
- W2893043792 cites W2058731611 @default.
- W2893043792 cites W2084778007 @default.
- W2893043792 cites W2086418613 @default.
- W2893043792 cites W2087737263 @default.
- W2893043792 cites W2087965082 @default.
- W2893043792 cites W2090379587 @default.
- W2893043792 cites W2095598361 @default.
- W2893043792 cites W2110604886 @default.
- W2893043792 cites W2110849583 @default.
- W2893043792 cites W2114025531 @default.
- W2893043792 cites W2117549362 @default.
- W2893043792 cites W2125343954 @default.
- W2893043792 cites W2125763679 @default.
- W2893043792 cites W2125956699 @default.
- W2893043792 cites W2126021103 @default.
- W2893043792 cites W2129090471 @default.
- W2893043792 cites W2129479849 @default.
- W2893043792 cites W2131419801 @default.
- W2893043792 cites W2137987480 @default.
- W2893043792 cites W2139709933 @default.
- W2893043792 cites W2145265567 @default.
- W2893043792 cites W2151456308 @default.
- W2893043792 cites W2161245744 @default.
- W2893043792 cites W2162167881 @default.
- W2893043792 cites W2164882196 @default.
- W2893043792 cites W2167968759 @default.
- W2893043792 cites W2170757132 @default.
- W2893043792 cites W2171005869 @default.
- W2893043792 cites W2179721300 @default.
- W2893043792 cites W2188596640 @default.
- W2893043792 cites W2328324618 @default.
- W2893043792 cites W2344328155 @default.
- W2893043792 cites W2364926198 @default.
- W2893043792 cites W2414367960 @default.
- W2893043792 cites W2602266163 @default.
- W2893043792 cites W2734727749 @default.
- W2893043792 cites W2766635578 @default.
- W2893043792 cites W2793728001 @default.
- W2893043792 cites W2799417842 @default.
- W2893043792 cites W2801296267 @default.
- W2893043792 cites W2804076223 @default.
- W2893043792 cites W2804825800 @default.
- W2893043792 cites W3010636899 @default.
- W2893043792 doi "https://doi.org/10.1016/j.rse.2018.09.017" @default.
- W2893043792 hasPublicationYear "2018" @default.
- W2893043792 type Work @default.
- W2893043792 sameAs 2893043792 @default.
- W2893043792 citedByCount "17" @default.
- W2893043792 countsByYear W28930437922019 @default.
- W2893043792 countsByYear W28930437922020 @default.
- W2893043792 countsByYear W28930437922021 @default.
- W2893043792 countsByYear W28930437922022 @default.
- W2893043792 countsByYear W28930437922023 @default.
- W2893043792 crossrefType "journal-article" @default.
- W2893043792 hasAuthorship W2893043792A5005808403 @default.
- W2893043792 hasAuthorship W2893043792A5034350662 @default.
- W2893043792 hasAuthorship W2893043792A5047123132 @default.
- W2893043792 hasAuthorship W2893043792A5062060623 @default.
- W2893043792 hasAuthorship W2893043792A5065574556 @default.
- W2893043792 hasAuthorship W2893043792A5071693218 @default.
- W2893043792 hasAuthorship W2893043792A5084735063 @default.
- W2893043792 hasBestOaLocation W28930437921 @default.
- W2893043792 hasConcept C108597893 @default.
- W2893043792 hasConcept C114700698 @default.
- W2893043792 hasConcept C120665830 @default.
- W2893043792 hasConcept C121332964 @default.
- W2893043792 hasConcept C127313418 @default.
- W2893043792 hasConcept C1276947 @default.