Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893058027> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2893058027 abstract "The use of machine learning approaches to detecting the human emotion of excitement via electroencephalography (EEG) while immersed in an immersive virtual reality environment is studied in this investigation. The ability to detect excitement has many potential applications such as in affective entertainment, neuromarketing and particularly in virtual reality computer gaming. Users are exposed to a roller-coaster experience as the emotional stimuli, which is expected to evoke the emotion of excitement, while simultaneously wearing virtual reality goggles, which delivers the virtual reality experience of excitement, and an EEG headset, which acquires the raw brain signals detected when exposed to this excitement stimuli. In this study, a deep learning approach is used to improve the excitement detection rate to well above the 90% accuracy level. In a prior similar study, the use of conventional machine learning approaches involving k-Nearest Neighbour (kNN) classifiers and Support Vector Machines (SVM) only achieved prediction accuracy rates of between 65-89%. Using a deep learning approach here, rates of 78-96% were achieved. This demonstrates the superiority of adopting a deep learning approach over other machine learning approaches for detecting human excitement when immersed in an immersive virtual reality environment." @default.
- W2893058027 created "2018-10-05" @default.
- W2893058027 creator A5006607556 @default.
- W2893058027 creator A5057024603 @default.
- W2893058027 date "2018-01-01" @default.
- W2893058027 modified "2023-10-02" @default.
- W2893058027 title "EEG-based excitement detection in immersive environments: An improved deep learning approach" @default.
- W2893058027 cites W1573043876 @default.
- W2893058027 cites W1956101870 @default.
- W2893058027 cites W2046556084 @default.
- W2893058027 cites W2066702759 @default.
- W2893058027 cites W2071408162 @default.
- W2893058027 cites W2128521063 @default.
- W2893058027 cites W2132083787 @default.
- W2893058027 cites W2139564752 @default.
- W2893058027 doi "https://doi.org/10.1063/1.5055547" @default.
- W2893058027 hasPublicationYear "2018" @default.
- W2893058027 type Work @default.
- W2893058027 sameAs 2893058027 @default.
- W2893058027 citedByCount "12" @default.
- W2893058027 countsByYear W28930580272020 @default.
- W2893058027 countsByYear W28930580272021 @default.
- W2893058027 countsByYear W28930580272022 @default.
- W2893058027 countsByYear W28930580272023 @default.
- W2893058027 crossrefType "proceedings-article" @default.
- W2893058027 hasAuthorship W2893058027A5006607556 @default.
- W2893058027 hasAuthorship W2893058027A5057024603 @default.
- W2893058027 hasBestOaLocation W28930580271 @default.
- W2893058027 hasConcept C107457646 @default.
- W2893058027 hasConcept C108583219 @default.
- W2893058027 hasConcept C12267149 @default.
- W2893058027 hasConcept C154945302 @default.
- W2893058027 hasConcept C15744967 @default.
- W2893058027 hasConcept C169760540 @default.
- W2893058027 hasConcept C194969405 @default.
- W2893058027 hasConcept C2780657452 @default.
- W2893058027 hasConcept C41008148 @default.
- W2893058027 hasConcept C522805319 @default.
- W2893058027 hasConcept C76155785 @default.
- W2893058027 hasConceptScore W2893058027C107457646 @default.
- W2893058027 hasConceptScore W2893058027C108583219 @default.
- W2893058027 hasConceptScore W2893058027C12267149 @default.
- W2893058027 hasConceptScore W2893058027C154945302 @default.
- W2893058027 hasConceptScore W2893058027C15744967 @default.
- W2893058027 hasConceptScore W2893058027C169760540 @default.
- W2893058027 hasConceptScore W2893058027C194969405 @default.
- W2893058027 hasConceptScore W2893058027C2780657452 @default.
- W2893058027 hasConceptScore W2893058027C41008148 @default.
- W2893058027 hasConceptScore W2893058027C522805319 @default.
- W2893058027 hasConceptScore W2893058027C76155785 @default.
- W2893058027 hasLocation W28930580271 @default.
- W2893058027 hasOpenAccess W2893058027 @default.
- W2893058027 hasPrimaryLocation W28930580271 @default.
- W2893058027 hasRelatedWork W2754896633 @default.
- W2893058027 hasRelatedWork W2889003880 @default.
- W2893058027 hasRelatedWork W2971619563 @default.
- W2893058027 hasRelatedWork W3093956116 @default.
- W2893058027 hasRelatedWork W3136688266 @default.
- W2893058027 hasRelatedWork W4224238571 @default.
- W2893058027 hasRelatedWork W4224276451 @default.
- W2893058027 hasRelatedWork W4313430574 @default.
- W2893058027 hasRelatedWork W4385484948 @default.
- W2893058027 hasRelatedWork W4386066942 @default.
- W2893058027 isParatext "false" @default.
- W2893058027 isRetracted "false" @default.
- W2893058027 magId "2893058027" @default.
- W2893058027 workType "article" @default.