Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893061404> ?p ?o ?g. }
- W2893061404 abstract "Abstract Phase behavior of hydrocarbons in confined nanopores is quite different from that of the bulk. In confined space, the high capillary pressure between vapor phase and liquid phase, and depressed critical properties under confinement will all affect the in-situ phase behavior. According to the theory of adsorption-induced structural phase transformation in nanopores, we modify the molar volume term of the Peng-Robinson equation of state (PR-EOS) by considering the reduced mole number of fluids caused by absorption to describe the phase behavior of fluids under confinement. Then capillary pressure is coupled with phase equilibrium equations, and the resulting system of nonlinear fugacity equations based on the modified PR-EOS is solved to present a comprehensive examination of the effect of capillary pressure and confinement on saturation pressures. Binary mixtures of methane with heavier hydrocarbons and a real reservoir fluid from the Eagle Ford confined at different pore sizes are considered. The effect of capillary pressure and confinement on the phase envelop shifts are compared. The modified PR-EOS show that there exists a linear relationship between critical temperature shift and pore size reductions, a quadratic relationship between critical pressure shift and pore size reductions which are consistent with the experimental and molecular simulation results. The shift in the phase envelop of binary mixtures and Eagle Ford fluids show that both the capillary pressure and confinement decrease the bubble point pressures, while they oppositely influence dew point pressures. It is worthy to be noted that the effect of capillary pressure on phase envelop shifts will be suppressed when taking the critical point shifts caused by confinement into consideration. For Eagle Ford fluids, the effect of confinement on phase envelop shift is dominant compared with that of capillary pressure, and the capillary pressure cannot be overlooked when pore radius decreases to 50 nm. While the confinement begins to play an important role on the saturation pressures when pore radius decreases to 100 nm. In addition, the methodology presented in this study can be extended to the phase equilibrium calculations of multiple pores since the modified PR-EOS can provide a consistent phase behavior description of fluid molecules over the whole range of pore sizes." @default.
- W2893061404 created "2018-10-05" @default.
- W2893061404 creator A5000218442 @default.
- W2893061404 creator A5003688630 @default.
- W2893061404 creator A5019285678 @default.
- W2893061404 creator A5021089842 @default.
- W2893061404 creator A5030013439 @default.
- W2893061404 creator A5053451645 @default.
- W2893061404 creator A5081211813 @default.
- W2893061404 creator A5081329695 @default.
- W2893061404 date "2018-09-24" @default.
- W2893061404 modified "2023-09-28" @default.
- W2893061404 title "Phase Equilibrium of Hydrocarbons Confined in Nanopores from a Modified Peng-Robinson Equation of State" @default.
- W2893061404 cites W1964868897 @default.
- W2893061404 cites W1975730032 @default.
- W2893061404 cites W1986993523 @default.
- W2893061404 cites W2006861541 @default.
- W2893061404 cites W2009267666 @default.
- W2893061404 cites W2015525679 @default.
- W2893061404 cites W2019342866 @default.
- W2893061404 cites W2025042958 @default.
- W2893061404 cites W2029212095 @default.
- W2893061404 cites W2034789165 @default.
- W2893061404 cites W2041335415 @default.
- W2893061404 cites W2043343989 @default.
- W2893061404 cites W2055574291 @default.
- W2893061404 cites W2056363590 @default.
- W2893061404 cites W2057443364 @default.
- W2893061404 cites W2062255538 @default.
- W2893061404 cites W2063511737 @default.
- W2893061404 cites W2068752931 @default.
- W2893061404 cites W2069297302 @default.
- W2893061404 cites W2070976810 @default.
- W2893061404 cites W2072270598 @default.
- W2893061404 cites W2073479604 @default.
- W2893061404 cites W2073601842 @default.
- W2893061404 cites W2084671076 @default.
- W2893061404 cites W2113932261 @default.
- W2893061404 cites W2129288307 @default.
- W2893061404 cites W2147451700 @default.
- W2893061404 cites W226451686 @default.
- W2893061404 cites W2270286801 @default.
- W2893061404 cites W2278752302 @default.
- W2893061404 cites W2520466307 @default.
- W2893061404 cites W2533350011 @default.
- W2893061404 cites W2588622022 @default.
- W2893061404 cites W2762255386 @default.
- W2893061404 cites W2790484309 @default.
- W2893061404 cites W2791062891 @default.
- W2893061404 cites W2794268454 @default.
- W2893061404 cites W2795536749 @default.
- W2893061404 cites W4229782738 @default.
- W2893061404 doi "https://doi.org/10.2118/191547-ms" @default.
- W2893061404 hasPublicationYear "2018" @default.
- W2893061404 type Work @default.
- W2893061404 sameAs 2893061404 @default.
- W2893061404 citedByCount "24" @default.
- W2893061404 countsByYear W28930614042019 @default.
- W2893061404 countsByYear W28930614042020 @default.
- W2893061404 countsByYear W28930614042021 @default.
- W2893061404 countsByYear W28930614042022 @default.
- W2893061404 countsByYear W28930614042023 @default.
- W2893061404 crossrefType "proceedings-article" @default.
- W2893061404 hasAuthorship W2893061404A5000218442 @default.
- W2893061404 hasAuthorship W2893061404A5003688630 @default.
- W2893061404 hasAuthorship W2893061404A5019285678 @default.
- W2893061404 hasAuthorship W2893061404A5021089842 @default.
- W2893061404 hasAuthorship W2893061404A5030013439 @default.
- W2893061404 hasAuthorship W2893061404A5053451645 @default.
- W2893061404 hasAuthorship W2893061404A5081211813 @default.
- W2893061404 hasAuthorship W2893061404A5081329695 @default.
- W2893061404 hasConcept C105569014 @default.
- W2893061404 hasConcept C121332964 @default.
- W2893061404 hasConcept C134306372 @default.
- W2893061404 hasConcept C157915830 @default.
- W2893061404 hasConcept C178790620 @default.
- W2893061404 hasConcept C185592680 @default.
- W2893061404 hasConcept C196298200 @default.
- W2893061404 hasConcept C196806460 @default.
- W2893061404 hasConcept C33923547 @default.
- W2893061404 hasConcept C44280652 @default.
- W2893061404 hasConcept C46262669 @default.
- W2893061404 hasConcept C48797263 @default.
- W2893061404 hasConcept C53810900 @default.
- W2893061404 hasConcept C57879066 @default.
- W2893061404 hasConcept C6648577 @default.
- W2893061404 hasConcept C85084404 @default.
- W2893061404 hasConcept C97355855 @default.
- W2893061404 hasConceptScore W2893061404C105569014 @default.
- W2893061404 hasConceptScore W2893061404C121332964 @default.
- W2893061404 hasConceptScore W2893061404C134306372 @default.
- W2893061404 hasConceptScore W2893061404C157915830 @default.
- W2893061404 hasConceptScore W2893061404C178790620 @default.
- W2893061404 hasConceptScore W2893061404C185592680 @default.
- W2893061404 hasConceptScore W2893061404C196298200 @default.
- W2893061404 hasConceptScore W2893061404C196806460 @default.
- W2893061404 hasConceptScore W2893061404C33923547 @default.
- W2893061404 hasConceptScore W2893061404C44280652 @default.
- W2893061404 hasConceptScore W2893061404C46262669 @default.
- W2893061404 hasConceptScore W2893061404C48797263 @default.