Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893061751> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2893061751 endingPage "830" @default.
- W2893061751 startingPage "811" @default.
- W2893061751 abstract "Disease mapping is the study of the distribution of disease relative risks or rates in space and time, and normally uses generalized linear mixed models (GLMMs) which includes fixed effects and spatial, temporal, and spatio-temporal random effects. Model fitting and statistical inference are commonly accomplished through the empirical Bayes (EB) and fully Bayes (FB) approaches. The EB approach usually relies on the penalized quasi-likelihood (PQL), while the FB approach, which has increasingly become more popular in the recent past, usually uses Markov chain Monte Carlo (McMC) techniques. However, there are many challenges in conventional use of posterior sampling via McMC for inference. This includes the need to evaluate convergence of posterior samples, which often requires extensive simulation and can be very time consuming. Spatio-temporal models used in disease mapping are often very complex and McMC methods may lead to large Monte Carlo errors if the dimension of the data at hand is large. To address these challenges, a new strategy based on integrated nested Laplace approximations (INLA) has recently been recently developed as a promising alternative to the McMC. This technique is now becoming more popular in disease mapping because of its ability to fit fairly complex space-time models much more quickly than the McMC. In this paper, we show how to fit different spatio-temporal models for disease mapping with INLA using the Leroux CAR prior for the spatial component, and we compare it with McMC using Kenya HIV incidence data during the period 2013-2016." @default.
- W2893061751 created "2018-10-05" @default.
- W2893061751 creator A5010701609 @default.
- W2893061751 creator A5036005393 @default.
- W2893061751 creator A5088297918 @default.
- W2893061751 date "2018-01-01" @default.
- W2893061751 modified "2023-10-18" @default.
- W2893061751 title "Spatio-Temporal Variation of HIV Infection in Kenya" @default.
- W2893061751 doi "https://doi.org/10.4236/ojs.2018.85053" @default.
- W2893061751 hasPublicationYear "2018" @default.
- W2893061751 type Work @default.
- W2893061751 sameAs 2893061751 @default.
- W2893061751 citedByCount "0" @default.
- W2893061751 crossrefType "journal-article" @default.
- W2893061751 hasAuthorship W2893061751A5010701609 @default.
- W2893061751 hasAuthorship W2893061751A5036005393 @default.
- W2893061751 hasAuthorship W2893061751A5088297918 @default.
- W2893061751 hasBestOaLocation W28930617511 @default.
- W2893061751 hasConcept C105795698 @default.
- W2893061751 hasConcept C107673813 @default.
- W2893061751 hasConcept C111350023 @default.
- W2893061751 hasConcept C11413529 @default.
- W2893061751 hasConcept C119857082 @default.
- W2893061751 hasConcept C134261354 @default.
- W2893061751 hasConcept C153720581 @default.
- W2893061751 hasConcept C154945302 @default.
- W2893061751 hasConcept C160234255 @default.
- W2893061751 hasConcept C207201462 @default.
- W2893061751 hasConcept C22243797 @default.
- W2893061751 hasConcept C2776214188 @default.
- W2893061751 hasConcept C33923547 @default.
- W2893061751 hasConcept C41008148 @default.
- W2893061751 hasConceptScore W2893061751C105795698 @default.
- W2893061751 hasConceptScore W2893061751C107673813 @default.
- W2893061751 hasConceptScore W2893061751C111350023 @default.
- W2893061751 hasConceptScore W2893061751C11413529 @default.
- W2893061751 hasConceptScore W2893061751C119857082 @default.
- W2893061751 hasConceptScore W2893061751C134261354 @default.
- W2893061751 hasConceptScore W2893061751C153720581 @default.
- W2893061751 hasConceptScore W2893061751C154945302 @default.
- W2893061751 hasConceptScore W2893061751C160234255 @default.
- W2893061751 hasConceptScore W2893061751C207201462 @default.
- W2893061751 hasConceptScore W2893061751C22243797 @default.
- W2893061751 hasConceptScore W2893061751C2776214188 @default.
- W2893061751 hasConceptScore W2893061751C33923547 @default.
- W2893061751 hasConceptScore W2893061751C41008148 @default.
- W2893061751 hasIssue "05" @default.
- W2893061751 hasLocation W28930617511 @default.
- W2893061751 hasOpenAccess W2893061751 @default.
- W2893061751 hasPrimaryLocation W28930617511 @default.
- W2893061751 hasRelatedWork W1571873289 @default.
- W2893061751 hasRelatedWork W2129877108 @default.
- W2893061751 hasRelatedWork W2149281073 @default.
- W2893061751 hasRelatedWork W2893061751 @default.
- W2893061751 hasRelatedWork W2969778518 @default.
- W2893061751 hasRelatedWork W3134187673 @default.
- W2893061751 hasRelatedWork W4223930025 @default.
- W2893061751 hasRelatedWork W4231471330 @default.
- W2893061751 hasRelatedWork W4295123271 @default.
- W2893061751 hasRelatedWork W981988864 @default.
- W2893061751 hasVolume "08" @default.
- W2893061751 isParatext "false" @default.
- W2893061751 isRetracted "false" @default.
- W2893061751 magId "2893061751" @default.
- W2893061751 workType "article" @default.