Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893078623> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2893078623 endingPage "8" @default.
- W2893078623 startingPage "1" @default.
- W2893078623 abstract "Abstract We propose to apply artificial intelligence approaches in a warm-starting procedure to accelerate active set methods that are used to solve strictly convex quadratic programs in the context of embedded model predictive control (MPC). The proposed warm-starting is based on machine learning where a good initialization of the active set method is learned from training data. Two approaches to generate the training data set are discussed, one based on gridding the feasibility domain, and one based on closed-loop simulations with typical initial conditions. The training data are then processed by machine learning-based classification algorithms that yield a good estimate of the initial active set for the iterative active set algorithm. By means of extensive case studies we demonstrate that the proposed approach is superior to existing warm-starting procedures in that it considerably reduces the number of active set iterations, thus allowing embedded MPC to be implemented using less computational effort." @default.
- W2893078623 created "2018-10-05" @default.
- W2893078623 creator A5009958418 @default.
- W2893078623 creator A5026844539 @default.
- W2893078623 creator A5081458703 @default.
- W2893078623 date "2019-01-01" @default.
- W2893078623 modified "2023-09-29" @default.
- W2893078623 title "Machine learning-based warm starting of active set methods in embedded model predictive control" @default.
- W2893078623 cites W1512222092 @default.
- W2893078623 cites W1562846598 @default.
- W2893078623 cites W1603657390 @default.
- W2893078623 cites W1978956894 @default.
- W2893078623 cites W1980145158 @default.
- W2893078623 cites W1981832695 @default.
- W2893078623 cites W1983864916 @default.
- W2893078623 cites W1991797953 @default.
- W2893078623 cites W1993170675 @default.
- W2893078623 cites W2003315888 @default.
- W2893078623 cites W2008818950 @default.
- W2893078623 cites W2013439434 @default.
- W2893078623 cites W2014405554 @default.
- W2893078623 cites W2035845189 @default.
- W2893078623 cites W2038759718 @default.
- W2893078623 cites W2074168837 @default.
- W2893078623 cites W2147062287 @default.
- W2893078623 cites W2152817319 @default.
- W2893078623 cites W2155632266 @default.
- W2893078623 cites W2156963939 @default.
- W2893078623 cites W4210721069 @default.
- W2893078623 doi "https://doi.org/10.1016/j.engappai.2018.09.014" @default.
- W2893078623 hasPublicationYear "2019" @default.
- W2893078623 type Work @default.
- W2893078623 sameAs 2893078623 @default.
- W2893078623 citedByCount "43" @default.
- W2893078623 countsByYear W28930786232018 @default.
- W2893078623 countsByYear W28930786232019 @default.
- W2893078623 countsByYear W28930786232020 @default.
- W2893078623 countsByYear W28930786232021 @default.
- W2893078623 countsByYear W28930786232022 @default.
- W2893078623 countsByYear W28930786232023 @default.
- W2893078623 crossrefType "journal-article" @default.
- W2893078623 hasAuthorship W2893078623A5009958418 @default.
- W2893078623 hasAuthorship W2893078623A5026844539 @default.
- W2893078623 hasAuthorship W2893078623A5081458703 @default.
- W2893078623 hasConcept C119857082 @default.
- W2893078623 hasConcept C154945302 @default.
- W2893078623 hasConcept C172205157 @default.
- W2893078623 hasConcept C177264268 @default.
- W2893078623 hasConcept C199360897 @default.
- W2893078623 hasConcept C2775924081 @default.
- W2893078623 hasConcept C41008148 @default.
- W2893078623 hasConcept C77967617 @default.
- W2893078623 hasConceptScore W2893078623C119857082 @default.
- W2893078623 hasConceptScore W2893078623C154945302 @default.
- W2893078623 hasConceptScore W2893078623C172205157 @default.
- W2893078623 hasConceptScore W2893078623C177264268 @default.
- W2893078623 hasConceptScore W2893078623C199360897 @default.
- W2893078623 hasConceptScore W2893078623C2775924081 @default.
- W2893078623 hasConceptScore W2893078623C41008148 @default.
- W2893078623 hasConceptScore W2893078623C77967617 @default.
- W2893078623 hasFunder F4320323251 @default.
- W2893078623 hasLocation W28930786231 @default.
- W2893078623 hasOpenAccess W2893078623 @default.
- W2893078623 hasPrimaryLocation W28930786231 @default.
- W2893078623 hasRelatedWork W2239420864 @default.
- W2893078623 hasRelatedWork W2295628041 @default.
- W2893078623 hasRelatedWork W2597787948 @default.
- W2893078623 hasRelatedWork W2951786554 @default.
- W2893078623 hasRelatedWork W2954428433 @default.
- W2893078623 hasRelatedWork W3095538999 @default.
- W2893078623 hasRelatedWork W3196155444 @default.
- W2893078623 hasRelatedWork W4286629047 @default.
- W2893078623 hasRelatedWork W4297094728 @default.
- W2893078623 hasRelatedWork W4224009465 @default.
- W2893078623 hasVolume "77" @default.
- W2893078623 isParatext "false" @default.
- W2893078623 isRetracted "false" @default.
- W2893078623 magId "2893078623" @default.
- W2893078623 workType "article" @default.