Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893085179> ?p ?o ?g. }
- W2893085179 endingPage "8" @default.
- W2893085179 startingPage "1" @default.
- W2893085179 abstract "The accurate prediction of prognosis and pattern of failure is crucial for optimizing treatment strategies for patients with cancer, and early evidence suggests that image texture analysis has great potential in predicting outcome both in terms of local control and treatment toxicity. The aim of this study was to assess the value of pretreatment 18F-FDG PET texture analysis for the prediction of treatment failure in primary head and neck squamous cell carcinoma (HNSCC) treated with concurrent chemoradiation therapy.We performed a retrospective analysis of 90 patients diagnosed with primary HNSCC treated between January 2010 and June 2017 with concurrent chemo-radiotherapy. All patients underwent 18F-FDG PET/CT before treatment. 18F-FDG PET/CT texture features of the whole primary tumor were measured using an open-source texture analysis package. Least absolute shrinkage and selection operator (LASSO) was employed to select the features that are associated the most with clinical outcome, as progression-free survival and overall survival. We performed a univariate and multivariate analysis between all the relevant texture parameters and local failure, adjusting for age, sex, smoking, primary tumor site, and primary tumor stage. Harrell c-index was employed to score the predictive power of the multivariate cox regression models.Twenty patients (22.2%) developed local failure, whereas the remaining 70 (77.8%) achieved durable local control. Multivariate analysis revealed that one feature, defined as low-intensity long-run emphasis (LILRE), was a significant predictor of outcome regardless of clinical variables (hazard ratio < 0.001, P=0.001).The multivariate model based on imaging biomarkers resulted superior in predicting local failure with a c-index of 0.76 against 0.65 of the model based on clinical variables alone.LILRE, evaluated on pretreatment 18F-FDG PET/CT, is associated with higher local failure in patients with HNSCC treated with chemoradiotherapy. Using texture analysis in addition to clinical variables may be useful in predicting local control." @default.
- W2893085179 created "2018-10-05" @default.
- W2893085179 creator A5003266494 @default.
- W2893085179 creator A5013108855 @default.
- W2893085179 creator A5013668484 @default.
- W2893085179 creator A5028907636 @default.
- W2893085179 creator A5035234834 @default.
- W2893085179 creator A5039268387 @default.
- W2893085179 creator A5043273845 @default.
- W2893085179 creator A5045569134 @default.
- W2893085179 creator A5059649665 @default.
- W2893085179 creator A5064977637 @default.
- W2893085179 creator A5082435105 @default.
- W2893085179 date "2018-09-27" @default.
- W2893085179 modified "2023-10-13" @default.
- W2893085179 title "Radiomic Profiling of Head and Neck Cancer: <sup>18</sup>F-FDG PET Texture Analysis as Predictor of Patient Survival" @default.
- W2893085179 cites W1766071755 @default.
- W2893085179 cites W1824790222 @default.
- W2893085179 cites W1892105223 @default.
- W2893085179 cites W1964620951 @default.
- W2893085179 cites W1965170884 @default.
- W2893085179 cites W1972111840 @default.
- W2893085179 cites W1987654907 @default.
- W2893085179 cites W1994510965 @default.
- W2893085179 cites W2001551406 @default.
- W2893085179 cites W2008108075 @default.
- W2893085179 cites W2025811877 @default.
- W2893085179 cites W2033973189 @default.
- W2893085179 cites W2039175061 @default.
- W2893085179 cites W2039479761 @default.
- W2893085179 cites W2046032792 @default.
- W2893085179 cites W2049691713 @default.
- W2893085179 cites W2055575746 @default.
- W2893085179 cites W2074445922 @default.
- W2893085179 cites W2081101007 @default.
- W2893085179 cites W2089588713 @default.
- W2893085179 cites W2097475056 @default.
- W2893085179 cites W2103004421 @default.
- W2893085179 cites W2108630902 @default.
- W2893085179 cites W2110664940 @default.
- W2893085179 cites W2127605299 @default.
- W2893085179 cites W2128739912 @default.
- W2893085179 cites W2133539678 @default.
- W2893085179 cites W2141059777 @default.
- W2893085179 cites W2142068201 @default.
- W2893085179 cites W2146787063 @default.
- W2893085179 cites W2147745144 @default.
- W2893085179 cites W2148433563 @default.
- W2893085179 cites W2174661749 @default.
- W2893085179 cites W2231056033 @default.
- W2893085179 cites W2253150690 @default.
- W2893085179 cites W2316367947 @default.
- W2893085179 cites W2484742387 @default.
- W2893085179 cites W2600642189 @default.
- W2893085179 cites W2617036670 @default.
- W2893085179 cites W2799666802 @default.
- W2893085179 cites W2804201451 @default.
- W2893085179 doi "https://doi.org/10.1155/2018/3574310" @default.
- W2893085179 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6180924" @default.
- W2893085179 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30363632" @default.
- W2893085179 hasPublicationYear "2018" @default.
- W2893085179 type Work @default.
- W2893085179 sameAs 2893085179 @default.
- W2893085179 citedByCount "34" @default.
- W2893085179 countsByYear W28930851792019 @default.
- W2893085179 countsByYear W28930851792020 @default.
- W2893085179 countsByYear W28930851792021 @default.
- W2893085179 countsByYear W28930851792022 @default.
- W2893085179 countsByYear W28930851792023 @default.
- W2893085179 crossrefType "journal-article" @default.
- W2893085179 hasAuthorship W2893085179A5003266494 @default.
- W2893085179 hasAuthorship W2893085179A5013108855 @default.
- W2893085179 hasAuthorship W2893085179A5013668484 @default.
- W2893085179 hasAuthorship W2893085179A5028907636 @default.
- W2893085179 hasAuthorship W2893085179A5035234834 @default.
- W2893085179 hasAuthorship W2893085179A5039268387 @default.
- W2893085179 hasAuthorship W2893085179A5043273845 @default.
- W2893085179 hasAuthorship W2893085179A5045569134 @default.
- W2893085179 hasAuthorship W2893085179A5059649665 @default.
- W2893085179 hasAuthorship W2893085179A5064977637 @default.
- W2893085179 hasAuthorship W2893085179A5082435105 @default.
- W2893085179 hasBestOaLocation W28930851791 @default.
- W2893085179 hasConcept C105795698 @default.
- W2893085179 hasConcept C126322002 @default.
- W2893085179 hasConcept C126838900 @default.
- W2893085179 hasConcept C143998085 @default.
- W2893085179 hasConcept C144301174 @default.
- W2893085179 hasConcept C146357865 @default.
- W2893085179 hasConcept C151730666 @default.
- W2893085179 hasConcept C161584116 @default.
- W2893085179 hasConcept C199163554 @default.
- W2893085179 hasConcept C207103383 @default.
- W2893085179 hasConcept C2776530083 @default.
- W2893085179 hasConcept C2776833033 @default.
- W2893085179 hasConcept C2989005 @default.
- W2893085179 hasConcept C33923547 @default.
- W2893085179 hasConcept C38180746 @default.
- W2893085179 hasConcept C44249647 @default.