Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893094212> ?p ?o ?g. }
- W2893094212 endingPage "257" @default.
- W2893094212 startingPage "241" @default.
- W2893094212 abstract "Abstract Let E be a uniformly convex and uniformly smooth real Banach space, and let E * be its dual. Let A : E → 2 E * be a bounded maximal monotone map. Assume that A −1 (0) ≠ Ø. A new iterative sequence is constructed which converges strongly to an element of A −1 (0). The theorem proved complements results obtained on strong convergence of the proximal point algorithm for approximating an element of A −1 (0) (assuming existence) and also resolves an important open question. Furthermore, this result is applied to convex optimization problems and to variational inequality problems. These results are achieved by combining a theorem of Reich on the strong convergence of the resolvent of maximal monotone mappings in a uniformly smooth real Banach space and new geometric properties of uniformly convex and uniformly smooth real Banach spaces introduced by Alber, with a technique of proof which is also of independent interest." @default.
- W2893094212 created "2018-10-05" @default.
- W2893094212 creator A5023684322 @default.
- W2893094212 creator A5035166882 @default.
- W2893094212 creator A5043438535 @default.
- W2893094212 creator A5057901214 @default.
- W2893094212 creator A5060395303 @default.
- W2893094212 date "2018-09-26" @default.
- W2893094212 modified "2023-09-27" @default.
- W2893094212 title "A Strong Convergence Theorem for an Iterative Method for Finding Zeros of Maximal Monotone Maps with Applications to Convex Minimization and Variational Inequality Problems" @default.
- W2893094212 cites W1495915592 @default.
- W2893094212 cites W1560858410 @default.
- W2893094212 cites W1581286100 @default.
- W2893094212 cites W1743360742 @default.
- W2893094212 cites W1953936588 @default.
- W2893094212 cites W1963571619 @default.
- W2893094212 cites W1972750385 @default.
- W2893094212 cites W1998554359 @default.
- W2893094212 cites W2007388834 @default.
- W2893094212 cites W2008965355 @default.
- W2893094212 cites W2009516747 @default.
- W2893094212 cites W2011363942 @default.
- W2893094212 cites W2019270502 @default.
- W2893094212 cites W2021605185 @default.
- W2893094212 cites W2038497950 @default.
- W2893094212 cites W2039067431 @default.
- W2893094212 cites W2039640401 @default.
- W2893094212 cites W2042261731 @default.
- W2893094212 cites W2048685143 @default.
- W2893094212 cites W2060122892 @default.
- W2893094212 cites W2063343625 @default.
- W2893094212 cites W2070798173 @default.
- W2893094212 cites W2093975846 @default.
- W2893094212 cites W2099679613 @default.
- W2893094212 cites W2100904599 @default.
- W2893094212 cites W2134851358 @default.
- W2893094212 cites W4232853762 @default.
- W2893094212 cites W4245503300 @default.
- W2893094212 cites W4251401614 @default.
- W2893094212 cites W4302197016 @default.
- W2893094212 cites W610522045 @default.
- W2893094212 doi "https://doi.org/10.1017/s0013091518000366" @default.
- W2893094212 hasPublicationYear "2018" @default.
- W2893094212 type Work @default.
- W2893094212 sameAs 2893094212 @default.
- W2893094212 citedByCount "5" @default.
- W2893094212 countsByYear W28930942122019 @default.
- W2893094212 countsByYear W28930942122020 @default.
- W2893094212 crossrefType "journal-article" @default.
- W2893094212 hasAuthorship W2893094212A5023684322 @default.
- W2893094212 hasAuthorship W2893094212A5035166882 @default.
- W2893094212 hasAuthorship W2893094212A5043438535 @default.
- W2893094212 hasAuthorship W2893094212A5057901214 @default.
- W2893094212 hasAuthorship W2893094212A5060395303 @default.
- W2893094212 hasConcept C112680207 @default.
- W2893094212 hasConcept C118615104 @default.
- W2893094212 hasConcept C132954091 @default.
- W2893094212 hasConcept C134306372 @default.
- W2893094212 hasConcept C157972887 @default.
- W2893094212 hasConcept C161999928 @default.
- W2893094212 hasConcept C162324750 @default.
- W2893094212 hasConcept C196267783 @default.
- W2893094212 hasConcept C202444582 @default.
- W2893094212 hasConcept C2524010 @default.
- W2893094212 hasConcept C2777303404 @default.
- W2893094212 hasConcept C2778112365 @default.
- W2893094212 hasConcept C2834757 @default.
- W2893094212 hasConcept C28826006 @default.
- W2893094212 hasConcept C33923547 @default.
- W2893094212 hasConcept C34388435 @default.
- W2893094212 hasConcept C50522688 @default.
- W2893094212 hasConcept C54355233 @default.
- W2893094212 hasConcept C86803240 @default.
- W2893094212 hasConceptScore W2893094212C112680207 @default.
- W2893094212 hasConceptScore W2893094212C118615104 @default.
- W2893094212 hasConceptScore W2893094212C132954091 @default.
- W2893094212 hasConceptScore W2893094212C134306372 @default.
- W2893094212 hasConceptScore W2893094212C157972887 @default.
- W2893094212 hasConceptScore W2893094212C161999928 @default.
- W2893094212 hasConceptScore W2893094212C162324750 @default.
- W2893094212 hasConceptScore W2893094212C196267783 @default.
- W2893094212 hasConceptScore W2893094212C202444582 @default.
- W2893094212 hasConceptScore W2893094212C2524010 @default.
- W2893094212 hasConceptScore W2893094212C2777303404 @default.
- W2893094212 hasConceptScore W2893094212C2778112365 @default.
- W2893094212 hasConceptScore W2893094212C2834757 @default.
- W2893094212 hasConceptScore W2893094212C28826006 @default.
- W2893094212 hasConceptScore W2893094212C33923547 @default.
- W2893094212 hasConceptScore W2893094212C34388435 @default.
- W2893094212 hasConceptScore W2893094212C50522688 @default.
- W2893094212 hasConceptScore W2893094212C54355233 @default.
- W2893094212 hasConceptScore W2893094212C86803240 @default.
- W2893094212 hasIssue "1" @default.
- W2893094212 hasLocation W28930942121 @default.
- W2893094212 hasOpenAccess W2893094212 @default.
- W2893094212 hasPrimaryLocation W28930942121 @default.
- W2893094212 hasRelatedWork W1608606993 @default.
- W2893094212 hasRelatedWork W2004775756 @default.