Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893104802> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2893104802 endingPage "2848" @default.
- W2893104802 startingPage "2839" @default.
- W2893104802 abstract "Prediction of air pollutants in particular those related to PM10 has developed a huge interest in recent years, mainly due to its impact on environment and humans. There are a large number of factors that influence air pollutant prediction. The researcher has to select the most relevant one by combining different input variables combinations in order to find the combination that provides the best prediction by artificial neural network (ANN). In this work, applications of principal component analysis (PCA) are presented to solve the problem of selection of variables in the prediction of daily PM10. This method is tested by utilizing time series data of solar radiation, vertical wind speed, atmospheric pressure, PM2.5, benzene, NO and PM10 for Varanasi, India. The results obtained shows that PCA-ANN predicts daily PM10 with mean absolute percentage error (MAPE) of 9.88% and it predicts better than multiple linear regression models." @default.
- W2893104802 created "2018-10-05" @default.
- W2893104802 creator A5023167384 @default.
- W2893104802 creator A5084532138 @default.
- W2893104802 date "2018-09-24" @default.
- W2893104802 modified "2023-09-25" @default.
- W2893104802 title "Novel hybrid model for daily prediction of PM10 using principal component analysis and artificial neural network" @default.
- W2893104802 cites W1966188114 @default.
- W2893104802 cites W1971688350 @default.
- W2893104802 cites W1974284277 @default.
- W2893104802 cites W1995356777 @default.
- W2893104802 cites W1999009322 @default.
- W2893104802 cites W2003517818 @default.
- W2893104802 cites W2012272234 @default.
- W2893104802 cites W2017272318 @default.
- W2893104802 cites W2019814461 @default.
- W2893104802 cites W2050205059 @default.
- W2893104802 cites W2056494717 @default.
- W2893104802 cites W2067469514 @default.
- W2893104802 cites W2072540810 @default.
- W2893104802 cites W2093926485 @default.
- W2893104802 cites W2110309989 @default.
- W2893104802 cites W2117510083 @default.
- W2893104802 cites W2118634354 @default.
- W2893104802 cites W2130231837 @default.
- W2893104802 cites W2132227759 @default.
- W2893104802 cites W2138535970 @default.
- W2893104802 cites W2148024527 @default.
- W2893104802 cites W2162124836 @default.
- W2893104802 cites W2167328081 @default.
- W2893104802 cites W2224627999 @default.
- W2893104802 cites W2261006517 @default.
- W2893104802 cites W2557608547 @default.
- W2893104802 cites W4292023222 @default.
- W2893104802 cites W620111676 @default.
- W2893104802 doi "https://doi.org/10.1007/s13762-018-1999-x" @default.
- W2893104802 hasPublicationYear "2018" @default.
- W2893104802 type Work @default.
- W2893104802 sameAs 2893104802 @default.
- W2893104802 citedByCount "13" @default.
- W2893104802 countsByYear W28931048022020 @default.
- W2893104802 countsByYear W28931048022021 @default.
- W2893104802 countsByYear W28931048022022 @default.
- W2893104802 countsByYear W28931048022023 @default.
- W2893104802 crossrefType "journal-article" @default.
- W2893104802 hasAuthorship W2893104802A5023167384 @default.
- W2893104802 hasAuthorship W2893104802A5084532138 @default.
- W2893104802 hasBestOaLocation W28931048021 @default.
- W2893104802 hasConcept C105795698 @default.
- W2893104802 hasConcept C139945424 @default.
- W2893104802 hasConcept C150217764 @default.
- W2893104802 hasConcept C153294291 @default.
- W2893104802 hasConcept C154945302 @default.
- W2893104802 hasConcept C161067210 @default.
- W2893104802 hasConcept C205649164 @default.
- W2893104802 hasConcept C27438332 @default.
- W2893104802 hasConcept C33923547 @default.
- W2893104802 hasConcept C39432304 @default.
- W2893104802 hasConcept C41008148 @default.
- W2893104802 hasConcept C48921125 @default.
- W2893104802 hasConcept C50644808 @default.
- W2893104802 hasConcept C74887250 @default.
- W2893104802 hasConceptScore W2893104802C105795698 @default.
- W2893104802 hasConceptScore W2893104802C139945424 @default.
- W2893104802 hasConceptScore W2893104802C150217764 @default.
- W2893104802 hasConceptScore W2893104802C153294291 @default.
- W2893104802 hasConceptScore W2893104802C154945302 @default.
- W2893104802 hasConceptScore W2893104802C161067210 @default.
- W2893104802 hasConceptScore W2893104802C205649164 @default.
- W2893104802 hasConceptScore W2893104802C27438332 @default.
- W2893104802 hasConceptScore W2893104802C33923547 @default.
- W2893104802 hasConceptScore W2893104802C39432304 @default.
- W2893104802 hasConceptScore W2893104802C41008148 @default.
- W2893104802 hasConceptScore W2893104802C48921125 @default.
- W2893104802 hasConceptScore W2893104802C50644808 @default.
- W2893104802 hasConceptScore W2893104802C74887250 @default.
- W2893104802 hasIssue "6" @default.
- W2893104802 hasLocation W28931048021 @default.
- W2893104802 hasOpenAccess W2893104802 @default.
- W2893104802 hasPrimaryLocation W28931048021 @default.
- W2893104802 hasRelatedWork W1520757848 @default.
- W2893104802 hasRelatedWork W2088241642 @default.
- W2893104802 hasRelatedWork W2171965617 @default.
- W2893104802 hasRelatedWork W2348761159 @default.
- W2893104802 hasRelatedWork W2969870112 @default.
- W2893104802 hasRelatedWork W3173956219 @default.
- W2893104802 hasRelatedWork W3200378132 @default.
- W2893104802 hasRelatedWork W4319838649 @default.
- W2893104802 hasRelatedWork W4377027734 @default.
- W2893104802 hasRelatedWork W3111430581 @default.
- W2893104802 hasVolume "16" @default.
- W2893104802 isParatext "false" @default.
- W2893104802 isRetracted "false" @default.
- W2893104802 magId "2893104802" @default.
- W2893104802 workType "article" @default.