Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893113437> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2893113437 endingPage "153" @default.
- W2893113437 startingPage "144" @default.
- W2893113437 abstract "A wide range of clustering algorithms exists, most of them expose many hyperparameters, on which clustering partition quality depends. Simultaneous algorithm (model) selection and its hyperparameters optimization is considered to be a sophisticated task, which is known according to some sources as combined algorithm selection and hyperparameter optimization. In this paper, we focus on problem of selecting a clustering algorithm and its hyperparameter vector simultaneously given a dataset in order to achieve the best partition quality. We propose a method for selecting a proper clustering algorithm and its hyperparameter vector using reinforcement learning. Instead of tuning hyperparameters for all available clustering algorithms and selecting one showing the best performance, we make them to compete for time that they can use for optimizing their own hyperparameters. In our algorithm, we use a framework for multi-armed bandit problem, which is a special case of reinforcement learning. Each clustering algorithm is considered as an arm in the multi-armed bandit setting, while assigning a time budget to optimize hyperparameters of a clustering algorithm is considered as playing the corresponding arm. We conducted series of experiments for comparing out reinforcement learning approach to the classical exhaustive search approach. We conducted experiments on 20 datasets from UCI Repository such as Iris, haberman, krvskp, glass and other. We use 19 cluster validity indices to validate the clusters, built by selected and configured algorithm. As a hyperparameter optimization algorithm, we used SMAC. Our approach managed to improve model selection and hyperparameter optimization process, by sustaining the exploration-exploitation trade-off and spending available time budget more wisely." @default.
- W2893113437 created "2018-10-05" @default.
- W2893113437 creator A5013743021 @default.
- W2893113437 creator A5025704136 @default.
- W2893113437 creator A5048360368 @default.
- W2893113437 creator A5079881929 @default.
- W2893113437 date "2018-01-01" @default.
- W2893113437 modified "2023-10-03" @default.
- W2893113437 title "Reinforcement-based Method for Simultaneous Clustering Algorithm Selection and its Hyperparameters Optimization" @default.
- W2893113437 cites W1495775210 @default.
- W2893113437 cites W1499307573 @default.
- W2893113437 cites W1532637815 @default.
- W2893113437 cites W1985059878 @default.
- W2893113437 cites W2031585418 @default.
- W2893113437 cites W2040854421 @default.
- W2893113437 cites W2089213632 @default.
- W2893113437 cites W2092433168 @default.
- W2893113437 cites W2121766240 @default.
- W2893113437 cites W2129066856 @default.
- W2893113437 cites W2138522309 @default.
- W2893113437 cites W2141363466 @default.
- W2893113437 cites W2141686968 @default.
- W2893113437 cites W2145955992 @default.
- W2893113437 cites W2151554678 @default.
- W2893113437 cites W2167467747 @default.
- W2893113437 cites W2309832917 @default.
- W2893113437 cites W2950680102 @default.
- W2893113437 doi "https://doi.org/10.1016/j.procs.2018.08.247" @default.
- W2893113437 hasPublicationYear "2018" @default.
- W2893113437 type Work @default.
- W2893113437 sameAs 2893113437 @default.
- W2893113437 citedByCount "13" @default.
- W2893113437 countsByYear W28931134372019 @default.
- W2893113437 countsByYear W28931134372020 @default.
- W2893113437 countsByYear W28931134372021 @default.
- W2893113437 countsByYear W28931134372022 @default.
- W2893113437 countsByYear W28931134372023 @default.
- W2893113437 crossrefType "journal-article" @default.
- W2893113437 hasAuthorship W2893113437A5013743021 @default.
- W2893113437 hasAuthorship W2893113437A5025704136 @default.
- W2893113437 hasAuthorship W2893113437A5048360368 @default.
- W2893113437 hasAuthorship W2893113437A5079881929 @default.
- W2893113437 hasBestOaLocation W28931134371 @default.
- W2893113437 hasConcept C10485038 @default.
- W2893113437 hasConcept C119857082 @default.
- W2893113437 hasConcept C12267149 @default.
- W2893113437 hasConcept C154945302 @default.
- W2893113437 hasConcept C41008148 @default.
- W2893113437 hasConcept C73555534 @default.
- W2893113437 hasConcept C81917197 @default.
- W2893113437 hasConcept C8642999 @default.
- W2893113437 hasConcept C97541855 @default.
- W2893113437 hasConceptScore W2893113437C10485038 @default.
- W2893113437 hasConceptScore W2893113437C119857082 @default.
- W2893113437 hasConceptScore W2893113437C12267149 @default.
- W2893113437 hasConceptScore W2893113437C154945302 @default.
- W2893113437 hasConceptScore W2893113437C41008148 @default.
- W2893113437 hasConceptScore W2893113437C73555534 @default.
- W2893113437 hasConceptScore W2893113437C81917197 @default.
- W2893113437 hasConceptScore W2893113437C8642999 @default.
- W2893113437 hasConceptScore W2893113437C97541855 @default.
- W2893113437 hasLocation W28931134371 @default.
- W2893113437 hasOpenAccess W2893113437 @default.
- W2893113437 hasPrimaryLocation W28931134371 @default.
- W2893113437 hasRelatedWork W3014750173 @default.
- W2893113437 hasRelatedWork W3096565539 @default.
- W2893113437 hasRelatedWork W3139241485 @default.
- W2893113437 hasRelatedWork W3199608561 @default.
- W2893113437 hasRelatedWork W4281646320 @default.
- W2893113437 hasRelatedWork W4283697347 @default.
- W2893113437 hasRelatedWork W4287818966 @default.
- W2893113437 hasRelatedWork W4295309597 @default.
- W2893113437 hasRelatedWork W4298144215 @default.
- W2893113437 hasRelatedWork W4381737452 @default.
- W2893113437 hasVolume "136" @default.
- W2893113437 isParatext "false" @default.
- W2893113437 isRetracted "false" @default.
- W2893113437 magId "2893113437" @default.
- W2893113437 workType "article" @default.