Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893113758> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2893113758 endingPage "375" @default.
- W2893113758 startingPage "369" @default.
- W2893113758 abstract "The leaves of plants have rich information in recognition of plants. In general, agriculture experts accomplish information extraction from the leaves. Since the leaves contain useful features for recognising various types of plants, so these features can be extracted and applied by automatic image recognition algorithms to classify plant species. In this study, the authors investigate a novel approach for recognition of plant species using GIST texture features. Then, the principal and suitable features are selected by principal component analysis (PCA) algorithm. In the classification step, three different approaches such as Patternnet neural network, support vector machine, and K-nearest neighbour (KNN) algorithms were applied to the extracted features. For evaluation of the authors’ approach, they applied their proposed algorithm on three famous datasets. In comparison to some widely used features, the results show that their approach outperforms the other methods in the case of the time and the accuracy. The best results were achieved by applying PCA algorithm to GIST feature vector and using the Cosine KNN classifier." @default.
- W2893113758 created "2018-10-05" @default.
- W2893113758 creator A5073073246 @default.
- W2893113758 creator A5089395374 @default.
- W2893113758 date "2019-03-29" @default.
- W2893113758 modified "2023-10-04" @default.
- W2893113758 title "Plant leaf classification using GIST texture features" @default.
- W2893113758 cites W1507138273 @default.
- W2893113758 cites W1566135517 @default.
- W2893113758 cites W159932088 @default.
- W2893113758 cites W1858660163 @default.
- W2893113758 cites W1870444468 @default.
- W2893113758 cites W1972847581 @default.
- W2893113758 cites W1977140987 @default.
- W2893113758 cites W1996079613 @default.
- W2893113758 cites W2008104685 @default.
- W2893113758 cites W2010635848 @default.
- W2893113758 cites W2012093028 @default.
- W2893113758 cites W2018148806 @default.
- W2893113758 cites W2044259175 @default.
- W2893113758 cites W2059471852 @default.
- W2893113758 cites W2068391401 @default.
- W2893113758 cites W2096038174 @default.
- W2893113758 cites W2106950129 @default.
- W2893113758 cites W2113855951 @default.
- W2893113758 cites W2121783305 @default.
- W2893113758 cites W2122524329 @default.
- W2893113758 cites W2131768008 @default.
- W2893113758 cites W2132002525 @default.
- W2893113758 cites W2133640696 @default.
- W2893113758 cites W2136915956 @default.
- W2893113758 cites W2147399836 @default.
- W2893113758 cites W2170049341 @default.
- W2893113758 cites W2213241010 @default.
- W2893113758 cites W2256962402 @default.
- W2893113758 cites W2497908278 @default.
- W2893113758 cites W4239510810 @default.
- W2893113758 cites W3022814278 @default.
- W2893113758 doi "https://doi.org/10.1049/iet-cvi.2018.5028" @default.
- W2893113758 hasPublicationYear "2019" @default.
- W2893113758 type Work @default.
- W2893113758 sameAs 2893113758 @default.
- W2893113758 citedByCount "34" @default.
- W2893113758 countsByYear W28931137582019 @default.
- W2893113758 countsByYear W28931137582020 @default.
- W2893113758 countsByYear W28931137582021 @default.
- W2893113758 countsByYear W28931137582022 @default.
- W2893113758 countsByYear W28931137582023 @default.
- W2893113758 crossrefType "journal-article" @default.
- W2893113758 hasAuthorship W2893113758A5073073246 @default.
- W2893113758 hasAuthorship W2893113758A5089395374 @default.
- W2893113758 hasConcept C12267149 @default.
- W2893113758 hasConcept C153180895 @default.
- W2893113758 hasConcept C154945302 @default.
- W2893113758 hasConcept C27438332 @default.
- W2893113758 hasConcept C41008148 @default.
- W2893113758 hasConcept C50644808 @default.
- W2893113758 hasConcept C52622490 @default.
- W2893113758 hasConcept C95623464 @default.
- W2893113758 hasConceptScore W2893113758C12267149 @default.
- W2893113758 hasConceptScore W2893113758C153180895 @default.
- W2893113758 hasConceptScore W2893113758C154945302 @default.
- W2893113758 hasConceptScore W2893113758C27438332 @default.
- W2893113758 hasConceptScore W2893113758C41008148 @default.
- W2893113758 hasConceptScore W2893113758C50644808 @default.
- W2893113758 hasConceptScore W2893113758C52622490 @default.
- W2893113758 hasConceptScore W2893113758C95623464 @default.
- W2893113758 hasIssue "4" @default.
- W2893113758 hasLocation W28931137581 @default.
- W2893113758 hasOpenAccess W2893113758 @default.
- W2893113758 hasPrimaryLocation W28931137581 @default.
- W2893113758 hasRelatedWork W2120008580 @default.
- W2893113758 hasRelatedWork W2126100045 @default.
- W2893113758 hasRelatedWork W2132729794 @default.
- W2893113758 hasRelatedWork W2147478239 @default.
- W2893113758 hasRelatedWork W2150085486 @default.
- W2893113758 hasRelatedWork W2160451891 @default.
- W2893113758 hasRelatedWork W2336974148 @default.
- W2893113758 hasRelatedWork W3004377704 @default.
- W2893113758 hasRelatedWork W4225691219 @default.
- W2893113758 hasRelatedWork W2345184372 @default.
- W2893113758 hasVolume "13" @default.
- W2893113758 isParatext "false" @default.
- W2893113758 isRetracted "false" @default.
- W2893113758 magId "2893113758" @default.
- W2893113758 workType "article" @default.