Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893115> ?p ?o ?g. }
- W2893115 endingPage "151" @default.
- W2893115 startingPage "5" @default.
- W2893115 abstract "Thisworkconcentratesonproblemsofmodelingatdiverseresolutions. Weinvestigatelimit procedureswhichleadamodelofonecategorytoamodelofanothercategory,andanalyzeobjective measures of models being close. While the methodology developedhere can be applied to any stochastic modeling problem, it is investigated in neural modeling context, which is of renewedinterest in control andinformation sciences. Weconsiderthejump-diffusionmodels,basedonacause-and-effectneurobiologicaldescription, the diffusion models obtained througha space and time averaging, and thedeterministic models, resulting from averaging out the random effects. Thethree forms of neuron models live independently in the literature, and the results obtained for one model are not moved to another form. To overcome this problem, we investigate the relations between various forms of the models. We formulate a general model driven by both marked Poisson processes and Wiener process, and identify its functions with neurobiological postulates. We then analyze the conditions under which it weakly converges to diffusion processes. We show that the convergenceis influencedby algebraic properties of theinputs. Inparticular, we provethat if the weights span the entire real space they belong to, and the jumps have deterministic amplitudes, then the model may converge only to a deterministic limit. Consequently, contrary to a common belief, the basic model cannot converge to a diffusion if its weights are modified in a learning process. We also introduce a scaling which leads the jump-diffusion models to diffusion models and show that the asymptotic models are eitherthe zero-drift diffusions or are deterministic. If separate scaling is applied to each classof inputs then the inputs can be dividedintothestochasticandthedeterministicclasses. Thelatterinfluenceonlythedriftofthe diffusion model, and the former influence only the diffusion function. These novel hypotheses call for experimental verification inreal biological systems. Thediffusionmodelsofneuronusuallyleadtoafirstpassageproblemfordiffusionprocess. We provide a uniform treatment of both analytical and numerical methods for thefirst passagetimedistributionofthediffusionprocessesthroughageneralbarrier,andapplytheresults the diffusion neuron. The results enable to further simplifythe diffusion neurons, to be able" @default.
- W2893115 created "2016-06-24" @default.
- W2893115 creator A5052747358 @default.
- W2893115 date "2000-01-01" @default.
- W2893115 modified "2023-09-23" @default.
- W2893115 title "Stochastic modeling at diverse scales: from poisson to network neurons" @default.
- W2893115 cites W1586180564 @default.
- W2893115 cites W162663279 @default.
- W2893115 cites W1642251103 @default.
- W2893115 cites W164636416 @default.
- W2893115 cites W184351371 @default.
- W2893115 cites W1965324089 @default.
- W2893115 cites W1968930216 @default.
- W2893115 cites W1970251968 @default.
- W2893115 cites W1970952245 @default.
- W2893115 cites W1976880943 @default.
- W2893115 cites W1979744531 @default.
- W2893115 cites W1980128065 @default.
- W2893115 cites W1983467563 @default.
- W2893115 cites W1985940938 @default.
- W2893115 cites W1986156247 @default.
- W2893115 cites W1988003754 @default.
- W2893115 cites W1991327318 @default.
- W2893115 cites W1999319504 @default.
- W2893115 cites W2007521907 @default.
- W2893115 cites W2009124551 @default.
- W2893115 cites W2009246079 @default.
- W2893115 cites W2014311414 @default.
- W2893115 cites W2016074699 @default.
- W2893115 cites W2017032949 @default.
- W2893115 cites W2019306960 @default.
- W2893115 cites W2020118336 @default.
- W2893115 cites W2026549506 @default.
- W2893115 cites W2029633324 @default.
- W2893115 cites W2029924743 @default.
- W2893115 cites W2034224020 @default.
- W2893115 cites W2036493905 @default.
- W2893115 cites W2039755641 @default.
- W2893115 cites W2041366733 @default.
- W2893115 cites W2044535991 @default.
- W2893115 cites W2046623691 @default.
- W2893115 cites W2064006517 @default.
- W2893115 cites W2067897213 @default.
- W2893115 cites W2073188009 @default.
- W2893115 cites W2079525147 @default.
- W2893115 cites W2082756680 @default.
- W2893115 cites W2092911205 @default.
- W2893115 cites W2095561390 @default.
- W2893115 cites W2101097683 @default.
- W2893115 cites W2112246162 @default.
- W2893115 cites W2120062331 @default.
- W2893115 cites W2120571340 @default.
- W2893115 cites W2128084896 @default.
- W2893115 cites W2150401723 @default.
- W2893115 cites W2164665159 @default.
- W2893115 cites W2166345215 @default.
- W2893115 cites W2166800934 @default.
- W2893115 cites W2170334710 @default.
- W2893115 cites W2183347027 @default.
- W2893115 cites W2194786082 @default.
- W2893115 cites W2321250305 @default.
- W2893115 cites W2322669081 @default.
- W2893115 cites W2323519400 @default.
- W2893115 cites W2326877010 @default.
- W2893115 cites W2327914381 @default.
- W2893115 cites W2327957739 @default.
- W2893115 cites W2331582877 @default.
- W2893115 cites W2335633561 @default.
- W2893115 cites W2405816544 @default.
- W2893115 cites W2414891918 @default.
- W2893115 cites W2611210475 @default.
- W2893115 cites W2766736793 @default.
- W2893115 cites W2802051192 @default.
- W2893115 cites W648885636 @default.
- W2893115 cites W939402919 @default.
- W2893115 hasPublicationYear "2000" @default.
- W2893115 type Work @default.
- W2893115 sameAs 2893115 @default.
- W2893115 citedByCount "0" @default.
- W2893115 crossrefType "journal-article" @default.
- W2893115 hasAuthorship W2893115A5052747358 @default.
- W2893115 hasConcept C105795698 @default.
- W2893115 hasConcept C121332964 @default.
- W2893115 hasConcept C121864883 @default.
- W2893115 hasConcept C127491075 @default.
- W2893115 hasConcept C151730666 @default.
- W2893115 hasConcept C2524010 @default.
- W2893115 hasConcept C2776825372 @default.
- W2893115 hasConcept C2779343474 @default.
- W2893115 hasConcept C2779664328 @default.
- W2893115 hasConcept C2780695682 @default.
- W2893115 hasConcept C28826006 @default.
- W2893115 hasConcept C3017618536 @default.
- W2893115 hasConcept C33923547 @default.
- W2893115 hasConcept C41008148 @default.
- W2893115 hasConcept C56739046 @default.
- W2893115 hasConcept C62520636 @default.
- W2893115 hasConcept C68710425 @default.