Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893119282> ?p ?o ?g. }
- W2893119282 endingPage "2180" @default.
- W2893119282 startingPage "2174" @default.
- W2893119282 abstract "The pilot contamination problem creates a limitation to the potential benefits of massive multiple input multiple output (MIMO) systems. To mitigate the pilot contamination, in this study, the authors propose a novel channel estimation for massive MIMO systems, using sparse Bayesian learning (SBL) based on a pattern-coupled hierarchical Gaussian framework. In the proposed technique, the sparsity of each channel coefficient is controlled by its own hyperparameter and the hyperparameters of its immediate neighbours. The simulation results show that the channel coefficients can be estimated more efficiently in contrast to the conventional channel estimators in terms of channel estimation with pilot contamination. Furthermore, they derive the mean square error (MSE) analytical expression for the proposed technique and based on that MSE expression, a pilot design criterion is proposed to design the optimal pilot to improve the estimation accuracy of the proposed algorithm using the Lagrange multiplier optimisation method. Results show that they can reduce the MSE of the SBL estimator by employing the optimal pilot sequence." @default.
- W2893119282 created "2018-10-05" @default.
- W2893119282 creator A5041338005 @default.
- W2893119282 creator A5086737565 @default.
- W2893119282 creator A5088212631 @default.
- W2893119282 date "2018-09-25" @default.
- W2893119282 modified "2023-09-23" @default.
- W2893119282 title "Enhanced sparse Bayesian learning‐based channel estimation with optimal pilot design for massive MIMO–OFDM systems" @default.
- W2893119282 cites W1971031702 @default.
- W2893119282 cites W2003523039 @default.
- W2893119282 cites W2023535408 @default.
- W2893119282 cites W2026207094 @default.
- W2893119282 cites W2029950600 @default.
- W2893119282 cites W2055849441 @default.
- W2893119282 cites W2060242169 @default.
- W2893119282 cites W2069844710 @default.
- W2893119282 cites W2071282831 @default.
- W2893119282 cites W2081771712 @default.
- W2893119282 cites W2092734317 @default.
- W2893119282 cites W2094596480 @default.
- W2893119282 cites W2096275885 @default.
- W2893119282 cites W2104266187 @default.
- W2893119282 cites W2111113050 @default.
- W2893119282 cites W2113157322 @default.
- W2893119282 cites W2121315337 @default.
- W2893119282 cites W2128439740 @default.
- W2893119282 cites W2129108650 @default.
- W2893119282 cites W2130134073 @default.
- W2893119282 cites W2136644341 @default.
- W2893119282 cites W2137628444 @default.
- W2893119282 cites W2147601077 @default.
- W2893119282 cites W2152999056 @default.
- W2893119282 cites W2161401803 @default.
- W2893119282 cites W2166873702 @default.
- W2893119282 cites W2167969193 @default.
- W2893119282 cites W2238937638 @default.
- W2893119282 cites W2343491855 @default.
- W2893119282 cites W2499082481 @default.
- W2893119282 cites W2507150745 @default.
- W2893119282 cites W2511784740 @default.
- W2893119282 cites W2549332560 @default.
- W2893119282 cites W2553907426 @default.
- W2893119282 cites W2593779246 @default.
- W2893119282 cites W2608810026 @default.
- W2893119282 cites W2734523996 @default.
- W2893119282 cites W2749760377 @default.
- W2893119282 cites W2753029281 @default.
- W2893119282 cites W2768278579 @default.
- W2893119282 cites W2779869257 @default.
- W2893119282 cites W2783043076 @default.
- W2893119282 cites W2785379587 @default.
- W2893119282 cites W3106345650 @default.
- W2893119282 cites W4241169080 @default.
- W2893119282 doi "https://doi.org/10.1049/iet-com.2018.5300" @default.
- W2893119282 hasPublicationYear "2018" @default.
- W2893119282 type Work @default.
- W2893119282 sameAs 2893119282 @default.
- W2893119282 citedByCount "6" @default.
- W2893119282 countsByYear W28931192822019 @default.
- W2893119282 countsByYear W28931192822020 @default.
- W2893119282 countsByYear W28931192822022 @default.
- W2893119282 crossrefType "journal-article" @default.
- W2893119282 hasAuthorship W2893119282A5041338005 @default.
- W2893119282 hasAuthorship W2893119282A5086737565 @default.
- W2893119282 hasAuthorship W2893119282A5088212631 @default.
- W2893119282 hasBestOaLocation W28931192822 @default.
- W2893119282 hasConcept C105795698 @default.
- W2893119282 hasConcept C107673813 @default.
- W2893119282 hasConcept C11413529 @default.
- W2893119282 hasConcept C121332964 @default.
- W2893119282 hasConcept C126255220 @default.
- W2893119282 hasConcept C127162648 @default.
- W2893119282 hasConcept C139945424 @default.
- W2893119282 hasConcept C154945302 @default.
- W2893119282 hasConcept C163716315 @default.
- W2893119282 hasConcept C185429906 @default.
- W2893119282 hasConcept C207987634 @default.
- W2893119282 hasConcept C33923547 @default.
- W2893119282 hasConcept C40409654 @default.
- W2893119282 hasConcept C41008148 @default.
- W2893119282 hasConcept C62520636 @default.
- W2893119282 hasConcept C73684929 @default.
- W2893119282 hasConcept C76155785 @default.
- W2893119282 hasConcept C8642999 @default.
- W2893119282 hasConceptScore W2893119282C105795698 @default.
- W2893119282 hasConceptScore W2893119282C107673813 @default.
- W2893119282 hasConceptScore W2893119282C11413529 @default.
- W2893119282 hasConceptScore W2893119282C121332964 @default.
- W2893119282 hasConceptScore W2893119282C126255220 @default.
- W2893119282 hasConceptScore W2893119282C127162648 @default.
- W2893119282 hasConceptScore W2893119282C139945424 @default.
- W2893119282 hasConceptScore W2893119282C154945302 @default.
- W2893119282 hasConceptScore W2893119282C163716315 @default.
- W2893119282 hasConceptScore W2893119282C185429906 @default.
- W2893119282 hasConceptScore W2893119282C207987634 @default.
- W2893119282 hasConceptScore W2893119282C33923547 @default.
- W2893119282 hasConceptScore W2893119282C40409654 @default.
- W2893119282 hasConceptScore W2893119282C41008148 @default.