Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893124520> ?p ?o ?g. }
- W2893124520 endingPage "644" @default.
- W2893124520 startingPage "627" @default.
- W2893124520 abstract "The microwave radiation passively emitted from the Moon is valuable for investigating the physical properties of the lunar regolith. Microwave maps, which can reveal subsurface characteristics at depths of centimeters to meters, give clues to understanding the evolution of the lunar surface. China's Chang'E-2 (CE-2) spacecraft carried a microwave radiometer (MRM) and conducted passive microwave remote sensing of the Moon at 3, 7.8, 19.35 and 37 GHz (10, 3.84, 1.55 and 0.81 cm wavelengths) during 2010–2011. Brightness temperature (TB) data derived from the MRM orbital observations cover the entire Moon, and the time coverage is over a complete lunation. In this paper, we use spherical harmonic fits to model the TB variation as functions of local time and latitude. Using these fits, we normalized the day- and nighttime TB data measured at various local times into noon-time and midnight conditions. The spatial sampling of the normalized TB maps is ∼6 km/pixel, much higher than ground-based observations and higher resolution than the MRM maps derived from Chang'E-1. By removing the variation in TB related to local time and latitude, we produced a series of microwave maps that reveal differences in the properties of the regolith across the lunar surface. The microwave behavior of various lunar surface features can be explained primarily by differences in the microwave loss tangent of the materials. For example, we find that the high-Ti maria have high daytime TB and exhibit lower nighttime TB than the other maria as a result of the high dielectric loss tangent of ilmenite. The ilmenite-rich materials are less transparent to microwaves, and hence emissions emerge from closer to the surface, which is heated strongly in the day and cools quickly at night. Most fresh craters correspond to low-TB spots in the nighttime microwave maps, in contrast to their behavior as hot spots in nighttime infrared data, suggesting that the higher loss tangent of rocks (compared to soils) suppresses microwave emission at night. The Aristarchus plateau has a lower loss tangent relative to its surroundings because it is blanketed by fine-grained, rock-poor pyroclastic material. The pyroclastic blanket is more transparent to microwaves than the nearby maria, causing the plateau to have relatively cool daytime TB and warm nighttime TB as a consequence of microwave emissions that originate at greater depths The Orientale basin is another prominent anomaly in the microwave maps, indicating that Orientale materials differ in thermophysical and/or dielectric properties from typical highland lithologies. Brightness temperature differences among prominent rayed craters indicate that the very youngest crater rays (e.g., Giordano Bruno) have lower thermal inertia than older but still optically immature rays (e.g., Tycho)." @default.
- W2893124520 created "2018-10-05" @default.
- W2893124520 creator A5006638187 @default.
- W2893124520 creator A5016931971 @default.
- W2893124520 creator A5022255115 @default.
- W2893124520 creator A5022369655 @default.
- W2893124520 creator A5027630221 @default.
- W2893124520 creator A5083772119 @default.
- W2893124520 creator A5084745971 @default.
- W2893124520 date "2019-02-01" @default.
- W2893124520 modified "2023-10-13" @default.
- W2893124520 title "Analysis of Chang'E-2 brightness temperature data and production of high spatial resolution microwave maps of the Moon" @default.
- W2893124520 cites W1544274373 @default.
- W2893124520 cites W1635167978 @default.
- W2893124520 cites W1965937155 @default.
- W2893124520 cites W1969545388 @default.
- W2893124520 cites W1976354196 @default.
- W2893124520 cites W1981695500 @default.
- W2893124520 cites W1985881928 @default.
- W2893124520 cites W1989213645 @default.
- W2893124520 cites W1994870708 @default.
- W2893124520 cites W1998234617 @default.
- W2893124520 cites W2003063233 @default.
- W2893124520 cites W2003760606 @default.
- W2893124520 cites W2005329325 @default.
- W2893124520 cites W2013280393 @default.
- W2893124520 cites W2026841101 @default.
- W2893124520 cites W2028675108 @default.
- W2893124520 cites W2030943590 @default.
- W2893124520 cites W2033456515 @default.
- W2893124520 cites W2034710738 @default.
- W2893124520 cites W2045138581 @default.
- W2893124520 cites W2055258845 @default.
- W2893124520 cites W2057529943 @default.
- W2893124520 cites W2057806072 @default.
- W2893124520 cites W2058622619 @default.
- W2893124520 cites W2061490875 @default.
- W2893124520 cites W2071556384 @default.
- W2893124520 cites W2075351638 @default.
- W2893124520 cites W2077285341 @default.
- W2893124520 cites W2078941021 @default.
- W2893124520 cites W2080600170 @default.
- W2893124520 cites W2082237790 @default.
- W2893124520 cites W2084025193 @default.
- W2893124520 cites W2084978233 @default.
- W2893124520 cites W2088436981 @default.
- W2893124520 cites W2088860967 @default.
- W2893124520 cites W2108813261 @default.
- W2893124520 cites W2118792547 @default.
- W2893124520 cites W2126353612 @default.
- W2893124520 cites W2128387312 @default.
- W2893124520 cites W2155243242 @default.
- W2893124520 cites W2170993112 @default.
- W2893124520 cites W2280448720 @default.
- W2893124520 cites W2281177717 @default.
- W2893124520 cites W2295060023 @default.
- W2893124520 cites W2341591950 @default.
- W2893124520 cites W2516169369 @default.
- W2893124520 cites W2607286646 @default.
- W2893124520 cites W2612375885 @default.
- W2893124520 cites W2621795226 @default.
- W2893124520 cites W2788093608 @default.
- W2893124520 cites W3123699241 @default.
- W2893124520 cites W55912154 @default.
- W2893124520 doi "https://doi.org/10.1016/j.icarus.2018.09.036" @default.
- W2893124520 hasPublicationYear "2019" @default.
- W2893124520 type Work @default.
- W2893124520 sameAs 2893124520 @default.
- W2893124520 citedByCount "31" @default.
- W2893124520 countsByYear W28931245202019 @default.
- W2893124520 countsByYear W28931245202020 @default.
- W2893124520 countsByYear W28931245202021 @default.
- W2893124520 countsByYear W28931245202022 @default.
- W2893124520 countsByYear W28931245202023 @default.
- W2893124520 crossrefType "journal-article" @default.
- W2893124520 hasAuthorship W2893124520A5006638187 @default.
- W2893124520 hasAuthorship W2893124520A5016931971 @default.
- W2893124520 hasAuthorship W2893124520A5022255115 @default.
- W2893124520 hasAuthorship W2893124520A5022369655 @default.
- W2893124520 hasAuthorship W2893124520A5027630221 @default.
- W2893124520 hasAuthorship W2893124520A5083772119 @default.
- W2893124520 hasAuthorship W2893124520A5084745971 @default.
- W2893124520 hasConcept C120189094 @default.
- W2893124520 hasConcept C121332964 @default.
- W2893124520 hasConcept C122523270 @default.
- W2893124520 hasConcept C127313418 @default.
- W2893124520 hasConcept C1276947 @default.
- W2893124520 hasConcept C13280743 @default.
- W2893124520 hasConcept C39432304 @default.
- W2893124520 hasConcept C41642174 @default.
- W2893124520 hasConcept C44838205 @default.
- W2893124520 hasConcept C53802167 @default.
- W2893124520 hasConcept C58650310 @default.
- W2893124520 hasConcept C62520636 @default.
- W2893124520 hasConcept C62649853 @default.
- W2893124520 hasConcept C91586092 @default.
- W2893124520 hasConcept C96960616 @default.
- W2893124520 hasConceptScore W2893124520C120189094 @default.