Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893136476> ?p ?o ?g. }
- W2893136476 endingPage "12071" @default.
- W2893136476 startingPage "12061" @default.
- W2893136476 abstract "The proliferation of various mobile devices equipped with GPS positioning modules makes the collection of trajectories more easier than ever before, and more and more trajectory datasets have been available for business applications or academic researches. Normally, published trajectories are often anonymized by replacing real identities of mobile objects with pseudonyms (e.g., random identifiers); however, privacy leaks can hardly be prevented. In this paper, we introduce a novel paradigm of de-anonymization attack re-identifying trajectories of victims from anonymous trajectory datasets. Different from existing attacks, no background knowledge or side channel information about the target dataset is required. Instead, we claim that, for each moving object, there exist some mobility patterns that reflect the preference or usual behavior of the object, and will not change dramatically over a period of time. As long as those relatively stable patterns can be extracted from trajectories and be utilized as quasi-identifiers, trajectories can be linked to anonymous historical ones. To implement such kind of de-anonymization attacks, an adversary only needs to collect a few trajectory segments of a victim, the durations of which do not necessarily overlap with that of trajectories in the target dataset (in simple terms, those trajectory segments are not necessary sub-trajectories included in the target dataset). Since the movements of victims in public areas could be observed openly, an adversary can obtain traces or locations about the victims either by direct monitoring them (e.g., tracking) or from third parties (e.g., social-networks). Then, the adversary extracts useful patterns from both the historical trajectories in the accessible dataset and newly obtained trajectory segments of victims, the historical trajectory with most similar patterns to that of a victim is considered as belonging to the victim. In order to demonstrate the feasibility of such attacks, we conduct extensive trace-driven simulations. We extract road segment preferences and stop of interests from trajectories of vehicles, and construct feature vectors (mobility patterns) of vehicles according to them, used for trajectory comparisons. Simulation results show that the adversary could re-identify anonymous trajectories effectively." @default.
- W2893136476 created "2018-10-05" @default.
- W2893136476 creator A5003753200 @default.
- W2893136476 creator A5013173652 @default.
- W2893136476 creator A5040587959 @default.
- W2893136476 creator A5069771802 @default.
- W2893136476 creator A5071050711 @default.
- W2893136476 date "2018-12-01" @default.
- W2893136476 modified "2023-10-14" @default.
- W2893136476 title "Revealing Privacy Vulnerabilities of Anonymous Trajectories" @default.
- W2893136476 cites W129600631 @default.
- W2893136476 cites W1964939486 @default.
- W2893136476 cites W1974653074 @default.
- W2893136476 cites W1993157943 @default.
- W2893136476 cites W2045686369 @default.
- W2893136476 cites W2052806235 @default.
- W2893136476 cites W2056773559 @default.
- W2893136476 cites W2068302187 @default.
- W2893136476 cites W2099907571 @default.
- W2893136476 cites W2115760869 @default.
- W2893136476 cites W2116347193 @default.
- W2893136476 cites W2119047901 @default.
- W2893136476 cites W2149944211 @default.
- W2893136476 cites W2166771065 @default.
- W2893136476 cites W2170166043 @default.
- W2893136476 cites W2261418456 @default.
- W2893136476 cites W2338583691 @default.
- W2893136476 cites W2513202551 @default.
- W2893136476 cites W2626557071 @default.
- W2893136476 cites W2744272124 @default.
- W2893136476 cites W2755255798 @default.
- W2893136476 cites W2796736331 @default.
- W2893136476 cites W2802302389 @default.
- W2893136476 cites W4299734264 @default.
- W2893136476 doi "https://doi.org/10.1109/tvt.2018.2871745" @default.
- W2893136476 hasPublicationYear "2018" @default.
- W2893136476 type Work @default.
- W2893136476 sameAs 2893136476 @default.
- W2893136476 citedByCount "14" @default.
- W2893136476 countsByYear W28931364762019 @default.
- W2893136476 countsByYear W28931364762020 @default.
- W2893136476 countsByYear W28931364762021 @default.
- W2893136476 countsByYear W28931364762022 @default.
- W2893136476 countsByYear W28931364762023 @default.
- W2893136476 crossrefType "journal-article" @default.
- W2893136476 hasAuthorship W2893136476A5003753200 @default.
- W2893136476 hasAuthorship W2893136476A5013173652 @default.
- W2893136476 hasAuthorship W2893136476A5040587959 @default.
- W2893136476 hasAuthorship W2893136476A5069771802 @default.
- W2893136476 hasAuthorship W2893136476A5071050711 @default.
- W2893136476 hasConcept C121332964 @default.
- W2893136476 hasConcept C124101348 @default.
- W2893136476 hasConcept C127162648 @default.
- W2893136476 hasConcept C1276947 @default.
- W2893136476 hasConcept C13662910 @default.
- W2893136476 hasConcept C136764020 @default.
- W2893136476 hasConcept C154504017 @default.
- W2893136476 hasConcept C154945302 @default.
- W2893136476 hasConcept C165696696 @default.
- W2893136476 hasConcept C178005623 @default.
- W2893136476 hasConcept C186967261 @default.
- W2893136476 hasConcept C2781238097 @default.
- W2893136476 hasConcept C31258907 @default.
- W2893136476 hasConcept C38652104 @default.
- W2893136476 hasConcept C41008148 @default.
- W2893136476 hasConcept C41065033 @default.
- W2893136476 hasConcept C60229501 @default.
- W2893136476 hasConcept C76155785 @default.
- W2893136476 hasConceptScore W2893136476C121332964 @default.
- W2893136476 hasConceptScore W2893136476C124101348 @default.
- W2893136476 hasConceptScore W2893136476C127162648 @default.
- W2893136476 hasConceptScore W2893136476C1276947 @default.
- W2893136476 hasConceptScore W2893136476C13662910 @default.
- W2893136476 hasConceptScore W2893136476C136764020 @default.
- W2893136476 hasConceptScore W2893136476C154504017 @default.
- W2893136476 hasConceptScore W2893136476C154945302 @default.
- W2893136476 hasConceptScore W2893136476C165696696 @default.
- W2893136476 hasConceptScore W2893136476C178005623 @default.
- W2893136476 hasConceptScore W2893136476C186967261 @default.
- W2893136476 hasConceptScore W2893136476C2781238097 @default.
- W2893136476 hasConceptScore W2893136476C31258907 @default.
- W2893136476 hasConceptScore W2893136476C38652104 @default.
- W2893136476 hasConceptScore W2893136476C41008148 @default.
- W2893136476 hasConceptScore W2893136476C41065033 @default.
- W2893136476 hasConceptScore W2893136476C60229501 @default.
- W2893136476 hasConceptScore W2893136476C76155785 @default.
- W2893136476 hasFunder F4320321001 @default.
- W2893136476 hasFunder F4320327803 @default.
- W2893136476 hasFunder F4320335787 @default.
- W2893136476 hasIssue "12" @default.
- W2893136476 hasLocation W28931364761 @default.
- W2893136476 hasOpenAccess W2893136476 @default.
- W2893136476 hasPrimaryLocation W28931364761 @default.
- W2893136476 hasRelatedWork W1481299995 @default.
- W2893136476 hasRelatedWork W2053719158 @default.
- W2893136476 hasRelatedWork W2768003418 @default.
- W2893136476 hasRelatedWork W3008951265 @default.
- W2893136476 hasRelatedWork W3046286843 @default.