Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893142332> ?p ?o ?g. }
- W2893142332 endingPage "127" @default.
- W2893142332 startingPage "99" @default.
- W2893142332 abstract "We briefly summarize the kernel regression approach, as used recently in materials modelling, to fitting functions, particularly potential energy surfaces, and highlight how the linear algebra framework can be used to both predict and train from linear functionals of the potential energy, such as the total energy and atomic forces. We then give a detailed account of the smooth overlap of atomic positions (SOAP) representation and kernel, showing how it arises from an abstract representation of smooth atomic densities, and how it is related to several popular density-based representations of atomic structure. We also discuss recent generalizations that allow fine control of correlations between different atomic species, prediction and fitting of tensorial properties, and also how to construct structural kernels—applicable to comparing entire molecules or periodic systems—that go beyond an additive combination of local environments. (This chapter is adapted with permission from Ceriotti et al. (Handbook of materials modeling. Springer, Cham, 2019).)" @default.
- W2893142332 created "2018-10-05" @default.
- W2893142332 creator A5015430594 @default.
- W2893142332 creator A5021241296 @default.
- W2893142332 creator A5025442671 @default.
- W2893142332 date "2020-01-01" @default.
- W2893142332 modified "2023-10-17" @default.
- W2893142332 title "Machine-Learning of Atomic-Scale Properties Based on Physical Principles" @default.
- W2893142332 cites W1600418041 @default.
- W2893142332 cites W1964357583 @default.
- W2893142332 cites W1964882117 @default.
- W2893142332 cites W1972135189 @default.
- W2893142332 cites W1973264045 @default.
- W2893142332 cites W1974672343 @default.
- W2893142332 cites W1978183953 @default.
- W2893142332 cites W1982991255 @default.
- W2893142332 cites W2016022549 @default.
- W2893142332 cites W2025444507 @default.
- W2893142332 cites W2029413789 @default.
- W2893142332 cites W2034097448 @default.
- W2893142332 cites W2037672122 @default.
- W2893142332 cites W2051382106 @default.
- W2893142332 cites W2073773252 @default.
- W2893142332 cites W2083415705 @default.
- W2893142332 cites W2104489082 @default.
- W2893142332 cites W2121402967 @default.
- W2893142332 cites W2140884041 @default.
- W2893142332 cites W2141696759 @default.
- W2893142332 cites W2142501550 @default.
- W2893142332 cites W2159357141 @default.
- W2893142332 cites W2312528888 @default.
- W2893142332 cites W2318908986 @default.
- W2893142332 cites W2337496963 @default.
- W2893142332 cites W2398874773 @default.
- W2893142332 cites W2415374455 @default.
- W2893142332 cites W2470768373 @default.
- W2893142332 cites W2541404351 @default.
- W2893142332 cites W2558395406 @default.
- W2893142332 cites W2566573083 @default.
- W2893142332 cites W2566642125 @default.
- W2893142332 cites W2585152223 @default.
- W2893142332 cites W26088913 @default.
- W2893142332 cites W2620687153 @default.
- W2893142332 cites W2728984672 @default.
- W2893142332 cites W2742127985 @default.
- W2893142332 cites W2749006386 @default.
- W2893142332 cites W2753962198 @default.
- W2893142332 cites W2757878424 @default.
- W2893142332 cites W2764267192 @default.
- W2893142332 cites W2765459427 @default.
- W2893142332 cites W2768638516 @default.
- W2893142332 cites W2782772320 @default.
- W2893142332 cites W2799063346 @default.
- W2893142332 cites W2805461540 @default.
- W2893142332 cites W2891523768 @default.
- W2893142332 cites W2910857709 @default.
- W2893142332 cites W2913034365 @default.
- W2893142332 cites W3098544579 @default.
- W2893142332 cites W3100571530 @default.
- W2893142332 cites W3101744125 @default.
- W2893142332 cites W3102659967 @default.
- W2893142332 cites W3104585744 @default.
- W2893142332 cites W3105239133 @default.
- W2893142332 cites W3106048414 @default.
- W2893142332 cites W4213223317 @default.
- W2893142332 doi "https://doi.org/10.1007/978-3-030-40245-7_6" @default.
- W2893142332 hasPublicationYear "2020" @default.
- W2893142332 type Work @default.
- W2893142332 sameAs 2893142332 @default.
- W2893142332 citedByCount "3" @default.
- W2893142332 countsByYear W28931423322021 @default.
- W2893142332 countsByYear W28931423322022 @default.
- W2893142332 crossrefType "book-chapter" @default.
- W2893142332 hasAuthorship W2893142332A5015430594 @default.
- W2893142332 hasAuthorship W2893142332A5021241296 @default.
- W2893142332 hasAuthorship W2893142332A5025442671 @default.
- W2893142332 hasBestOaLocation W28931423322 @default.
- W2893142332 hasConcept C121332964 @default.
- W2893142332 hasConcept C121864883 @default.
- W2893142332 hasConcept C17744445 @default.
- W2893142332 hasConcept C186370098 @default.
- W2893142332 hasConcept C199360897 @default.
- W2893142332 hasConcept C199539241 @default.
- W2893142332 hasConcept C202444582 @default.
- W2893142332 hasConcept C2776359362 @default.
- W2893142332 hasConcept C2778755073 @default.
- W2893142332 hasConcept C2780801425 @default.
- W2893142332 hasConcept C33332235 @default.
- W2893142332 hasConcept C33923547 @default.
- W2893142332 hasConcept C41008148 @default.
- W2893142332 hasConcept C62520636 @default.
- W2893142332 hasConcept C66823137 @default.
- W2893142332 hasConcept C74193536 @default.
- W2893142332 hasConcept C94625758 @default.
- W2893142332 hasConceptScore W2893142332C121332964 @default.
- W2893142332 hasConceptScore W2893142332C121864883 @default.
- W2893142332 hasConceptScore W2893142332C17744445 @default.
- W2893142332 hasConceptScore W2893142332C186370098 @default.