Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893170820> ?p ?o ?g. }
- W2893170820 endingPage "5342" @default.
- W2893170820 startingPage "5332" @default.
- W2893170820 abstract "Purpose Current radiation therapy planning uses a set of defined dose–volume constraints to ensure a specified level of tumor coverage while constraining the dose distribution in the organs at risk. Such constraints are aggregated, population‐based quantities that do not adequately consider patient‐specific risk factors. Furthermore, these constraints are calculated for each organ independently and it is therefore not guaranteed that the optimal trade‐off between organs is achieved. We introduce a novel radiotherapy planning approach where a patient‐specific all‐cause mortality risk is minimized using inverse plan optimization. As illustration of concept, our outcome risk model incorporates patient age, sex, cardiac risk factor ( CRF ), and smoking. Methods and materials We retrospectively analyzed a left‐sided breast cancer case and a Hodgkin's lymphoma case, both clinically treated with three‐dimensional conformal radiotherapy (3D‐ CRT ). Our objective function for inverse plan optimization was an equally weighted summation of risk models for cancer recurrence and mortality from radiation‐induced coronary heart disease and secondary lung and breast cancers incorporating patient age, sex, CRF, and smoking. We allowed the optimization algorithm to choose from a large set of gantry angles. The optimization task was to choose beams and optimize monitor units ( MU s) so that overall survival was maximized (and the total risk of cancer recurrence and mortality from radiation‐induced causes were minimized). The sensitivity analysis was performed in the lymphoma case by changing the tumor control probability model from using mean dose (Model 1) to using generalized equivalent uniform dose (Model 2). Results For the breast case in this study, the 3D‐ CRT clinical plan used eight beams while the proposed 3D‐ CRT outcome‐optimized plan used five beams, reducing the total risk — summation of the risks of recurrence and secondary disease mortality — from 3% to 2%. The mean doses to clinical target volume ( CTV ) and internal mammary nodes ( IMN ) were increased in the outcome‐optimized plan by 1.9 and 1.8 Gy, respectively. For the Hodgkin's lymphoma case, the clinical 3D‐ CRT plan used two beams, while the proposed 3D‐ CRT outcome‐optimized plan used three beams, reducing the total risk by 6% (from 16% to 10%). Using either of the two tumor control models for the lymphoma case resulted in outcome‐optimized plans where tumor control was compensated at the cost of saving organs at risk. However, the impact of sensitivity to models was comparatively large. Using Model 1 resulted in a reduction in mean target dose by 15.2 vs 7.1 Gy for Model 2. In all cases, the chosen beams in outcome‐optimized plans were different from clinically used beams. Conclusions The proposed optimization strategy, supplanting dosimetric objectives with comprehensive individual risk estimates, has the potential to yield improved outcomes in terms of reduced mortality risk in cancer patients treated with radiotherapy. The approach is, however, currently limited by gaps in knowledge about the effect of compromising dose to part of the target, for example, in order to spare cardiac structures." @default.
- W2893170820 created "2018-10-05" @default.
- W2893170820 creator A5001736998 @default.
- W2893170820 creator A5020305999 @default.
- W2893170820 creator A5048257046 @default.
- W2893170820 creator A5066494277 @default.
- W2893170820 creator A5066741375 @default.
- W2893170820 creator A5072114247 @default.
- W2893170820 creator A5079940663 @default.
- W2893170820 date "2018-10-17" @default.
- W2893170820 modified "2023-10-10" @default.
- W2893170820 title "Individualized estimates of overall survival in radiation therapy plan optimization — A concept study" @default.
- W2893170820 cites W1770259999 @default.
- W2893170820 cites W1843771850 @default.
- W2893170820 cites W1978537515 @default.
- W2893170820 cites W1984570865 @default.
- W2893170820 cites W1997319919 @default.
- W2893170820 cites W2006626394 @default.
- W2893170820 cites W2025318905 @default.
- W2893170820 cites W2026388494 @default.
- W2893170820 cites W2029328961 @default.
- W2893170820 cites W2046701188 @default.
- W2893170820 cites W2062616726 @default.
- W2893170820 cites W2066617715 @default.
- W2893170820 cites W2075642745 @default.
- W2893170820 cites W2076514228 @default.
- W2893170820 cites W2097512974 @default.
- W2893170820 cites W2100025800 @default.
- W2893170820 cites W2101920731 @default.
- W2893170820 cites W2106193652 @default.
- W2893170820 cites W2107514555 @default.
- W2893170820 cites W2108539626 @default.
- W2893170820 cites W2111881777 @default.
- W2893170820 cites W2113144418 @default.
- W2893170820 cites W2134592280 @default.
- W2893170820 cites W2139386984 @default.
- W2893170820 cites W2140801657 @default.
- W2893170820 cites W2154375587 @default.
- W2893170820 cites W2157830817 @default.
- W2893170820 cites W2158615473 @default.
- W2893170820 cites W2173784372 @default.
- W2893170820 cites W2205503125 @default.
- W2893170820 cites W2331622534 @default.
- W2893170820 cites W2470503807 @default.
- W2893170820 cites W2485683853 @default.
- W2893170820 cites W2493255008 @default.
- W2893170820 cites W2563690394 @default.
- W2893170820 cites W2572067997 @default.
- W2893170820 cites W4300840064 @default.
- W2893170820 cites W993406450 @default.
- W2893170820 doi "https://doi.org/10.1002/mp.13211" @default.
- W2893170820 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30246353" @default.
- W2893170820 hasPublicationYear "2018" @default.
- W2893170820 type Work @default.
- W2893170820 sameAs 2893170820 @default.
- W2893170820 citedByCount "7" @default.
- W2893170820 countsByYear W28931708202019 @default.
- W2893170820 countsByYear W28931708202020 @default.
- W2893170820 countsByYear W28931708202021 @default.
- W2893170820 countsByYear W28931708202022 @default.
- W2893170820 crossrefType "journal-article" @default.
- W2893170820 hasAuthorship W2893170820A5001736998 @default.
- W2893170820 hasAuthorship W2893170820A5020305999 @default.
- W2893170820 hasAuthorship W2893170820A5048257046 @default.
- W2893170820 hasAuthorship W2893170820A5066494277 @default.
- W2893170820 hasAuthorship W2893170820A5066741375 @default.
- W2893170820 hasAuthorship W2893170820A5072114247 @default.
- W2893170820 hasAuthorship W2893170820A5079940663 @default.
- W2893170820 hasConcept C121608353 @default.
- W2893170820 hasConcept C126322002 @default.
- W2893170820 hasConcept C126838900 @default.
- W2893170820 hasConcept C19527891 @default.
- W2893170820 hasConcept C201645570 @default.
- W2893170820 hasConcept C2908647359 @default.
- W2893170820 hasConcept C509974204 @default.
- W2893170820 hasConcept C530470458 @default.
- W2893170820 hasConcept C71924100 @default.
- W2893170820 hasConcept C99454951 @default.
- W2893170820 hasConceptScore W2893170820C121608353 @default.
- W2893170820 hasConceptScore W2893170820C126322002 @default.
- W2893170820 hasConceptScore W2893170820C126838900 @default.
- W2893170820 hasConceptScore W2893170820C19527891 @default.
- W2893170820 hasConceptScore W2893170820C201645570 @default.
- W2893170820 hasConceptScore W2893170820C2908647359 @default.
- W2893170820 hasConceptScore W2893170820C509974204 @default.
- W2893170820 hasConceptScore W2893170820C530470458 @default.
- W2893170820 hasConceptScore W2893170820C71924100 @default.
- W2893170820 hasConceptScore W2893170820C99454951 @default.
- W2893170820 hasIssue "11" @default.
- W2893170820 hasLocation W28931708201 @default.
- W2893170820 hasLocation W28931708202 @default.
- W2893170820 hasOpenAccess W2893170820 @default.
- W2893170820 hasPrimaryLocation W28931708201 @default.
- W2893170820 hasRelatedWork W1562768246 @default.
- W2893170820 hasRelatedWork W1602261451 @default.
- W2893170820 hasRelatedWork W2003305474 @default.
- W2893170820 hasRelatedWork W2031643092 @default.
- W2893170820 hasRelatedWork W2041795146 @default.