Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893202425> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2893202425 abstract "The automatic digitizing of paper maps is a significant and challenging task for both academia and industry. As an important procedure of map digitizing, the semantic segmentation section is mainly relied on manual visual interpretation with low efficiency. In this study, we select urban planning maps as a representative sample and investigate the feasibility of utilizing U-shape fully convolutional based architecture to perform end-to-end map semantic segmentation. The experimental results obtained from the test area in Shibuya district, Tokyo, demonstrate that our proposed method could achieve a very high Jaccard similarity coefficient of 93.63% and an overall accuracy of 99.36%. For implementation on GPGPU and cuDNN, the required processing time for the whole Shibuya district can be less than three minutes. The results indicate the proposed method can serve as a viable tool for urban planning map semantic segmentation task with high accuracy and efficiency." @default.
- W2893202425 created "2018-10-05" @default.
- W2893202425 creator A5024890303 @default.
- W2893202425 creator A5028577414 @default.
- W2893202425 creator A5033473365 @default.
- W2893202425 creator A5034236256 @default.
- W2893202425 creator A5034840625 @default.
- W2893202425 creator A5046856721 @default.
- W2893202425 creator A5050975050 @default.
- W2893202425 creator A5062888811 @default.
- W2893202425 creator A5076475219 @default.
- W2893202425 date "2018-07-01" @default.
- W2893202425 modified "2023-10-04" @default.
- W2893202425 title "Semantic Segmentation for Urban Planning Maps Based on U-Net" @default.
- W2893202425 cites W114517082 @default.
- W2893202425 cites W1572063013 @default.
- W2893202425 cites W2033457004 @default.
- W2893202425 cites W2076063813 @default.
- W2893202425 cites W2098180043 @default.
- W2893202425 cites W2112796928 @default.
- W2893202425 cites W2118246710 @default.
- W2893202425 cites W2316247010 @default.
- W2893202425 cites W2919115771 @default.
- W2893202425 doi "https://doi.org/10.1109/igarss.2018.8519049" @default.
- W2893202425 hasPublicationYear "2018" @default.
- W2893202425 type Work @default.
- W2893202425 sameAs 2893202425 @default.
- W2893202425 citedByCount "14" @default.
- W2893202425 countsByYear W28932024252019 @default.
- W2893202425 countsByYear W28932024252020 @default.
- W2893202425 countsByYear W28932024252021 @default.
- W2893202425 countsByYear W28932024252022 @default.
- W2893202425 crossrefType "proceedings-article" @default.
- W2893202425 hasAuthorship W2893202425A5024890303 @default.
- W2893202425 hasAuthorship W2893202425A5028577414 @default.
- W2893202425 hasAuthorship W2893202425A5033473365 @default.
- W2893202425 hasAuthorship W2893202425A5034236256 @default.
- W2893202425 hasAuthorship W2893202425A5034840625 @default.
- W2893202425 hasAuthorship W2893202425A5046856721 @default.
- W2893202425 hasAuthorship W2893202425A5050975050 @default.
- W2893202425 hasAuthorship W2893202425A5062888811 @default.
- W2893202425 hasAuthorship W2893202425A5076475219 @default.
- W2893202425 hasBestOaLocation W28932024252 @default.
- W2893202425 hasConcept C103278499 @default.
- W2893202425 hasConcept C115961682 @default.
- W2893202425 hasConcept C124101348 @default.
- W2893202425 hasConcept C124504099 @default.
- W2893202425 hasConcept C127413603 @default.
- W2893202425 hasConcept C153180895 @default.
- W2893202425 hasConcept C154945302 @default.
- W2893202425 hasConcept C201995342 @default.
- W2893202425 hasConcept C203519979 @default.
- W2893202425 hasConcept C2780451532 @default.
- W2893202425 hasConcept C31972630 @default.
- W2893202425 hasConcept C41008148 @default.
- W2893202425 hasConcept C89600930 @default.
- W2893202425 hasConceptScore W2893202425C103278499 @default.
- W2893202425 hasConceptScore W2893202425C115961682 @default.
- W2893202425 hasConceptScore W2893202425C124101348 @default.
- W2893202425 hasConceptScore W2893202425C124504099 @default.
- W2893202425 hasConceptScore W2893202425C127413603 @default.
- W2893202425 hasConceptScore W2893202425C153180895 @default.
- W2893202425 hasConceptScore W2893202425C154945302 @default.
- W2893202425 hasConceptScore W2893202425C201995342 @default.
- W2893202425 hasConceptScore W2893202425C203519979 @default.
- W2893202425 hasConceptScore W2893202425C2780451532 @default.
- W2893202425 hasConceptScore W2893202425C31972630 @default.
- W2893202425 hasConceptScore W2893202425C41008148 @default.
- W2893202425 hasConceptScore W2893202425C89600930 @default.
- W2893202425 hasLocation W28932024251 @default.
- W2893202425 hasLocation W28932024252 @default.
- W2893202425 hasOpenAccess W2893202425 @default.
- W2893202425 hasPrimaryLocation W28932024251 @default.
- W2893202425 hasRelatedWork W1669643531 @default.
- W2893202425 hasRelatedWork W1982826852 @default.
- W2893202425 hasRelatedWork W2005437358 @default.
- W2893202425 hasRelatedWork W2008656436 @default.
- W2893202425 hasRelatedWork W2023558673 @default.
- W2893202425 hasRelatedWork W2110230079 @default.
- W2893202425 hasRelatedWork W2134924024 @default.
- W2893202425 hasRelatedWork W2441762250 @default.
- W2893202425 hasRelatedWork W2517104666 @default.
- W2893202425 hasRelatedWork W2613186388 @default.
- W2893202425 isParatext "false" @default.
- W2893202425 isRetracted "false" @default.
- W2893202425 magId "2893202425" @default.
- W2893202425 workType "article" @default.