Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893206995> ?p ?o ?g. }
- W2893206995 endingPage "782" @default.
- W2893206995 startingPage "770" @default.
- W2893206995 abstract "Abstract Accurate prediction of the long-term average dimensions of alluvial stable channels is a significant problem in river engineering. The goal of this research is to investigate the effect of flow discharge (Q), mean sediment size (d50) and Shields parameter (τ∗) on the stable channel dimensions by employing non-linear regression (NLR) and two Artificial Intelligence (AI) methods, including: Generalized Structure of Group Method of Data Handling (GS-GMDH) neural network and Gene Expression Programming (GEP). Discharge, grain size and Shields parameter from 85 gaging stations situated in three stable Iranian rivers were used as input data for the three methods to estimate the water-surface width (W), average flow depth (D) and longitudinal slope (S) of the rivers. Based on the results, it was found that the GS-GMDH produced more accurate results for simulating the channel width with a Mean Absolute Relative Error (MARE) value of 0.055; and GEP produced better estimations for channel depth and slope with MARE values of 0.035 and 0.03, respectively. Furthermore, by employing Artificial Intelligence (AI) methods (GS-GMDH and GEP), the RMSE values decreased by 22%, 25% and 75% in predicting width, depth, and slope, respectively, compared to NLR method. The overall results showed that the AI methods generally produced better estimations than the non-linear regression method. To determine the effect of each input variable (Q, d50, τ∗) on the target variables (W, D, S), a sensitivity analysis comprising various combinations of input variables was conducted. Based on the results, the flow discharge had a dominant role on depth and width estimation of stable channels. In slope estimation, the most important parameter was τ∗ and then d50, while the discharge had a weak effect on slope prediction. In general, the Shields parameter was the most effective parameter in depth and specially slope estimation of stable channels." @default.
- W2893206995 created "2018-10-05" @default.
- W2893206995 creator A5013280761 @default.
- W2893206995 creator A5028599678 @default.
- W2893206995 creator A5034826612 @default.
- W2893206995 creator A5044658695 @default.
- W2893206995 creator A5060191046 @default.
- W2893206995 creator A5075190563 @default.
- W2893206995 creator A5086247042 @default.
- W2893206995 date "2018-11-01" @default.
- W2893206995 modified "2023-10-17" @default.
- W2893206995 title "Stable alluvial channel design using evolutionary neural networks" @default.
- W2893206995 cites W1242637710 @default.
- W2893206995 cites W1966182442 @default.
- W2893206995 cites W1970384904 @default.
- W2893206995 cites W1971486607 @default.
- W2893206995 cites W1973676661 @default.
- W2893206995 cites W1974562362 @default.
- W2893206995 cites W1978058261 @default.
- W2893206995 cites W1978315128 @default.
- W2893206995 cites W1980596037 @default.
- W2893206995 cites W1980767780 @default.
- W2893206995 cites W1982889847 @default.
- W2893206995 cites W1983211360 @default.
- W2893206995 cites W1998300065 @default.
- W2893206995 cites W1998925645 @default.
- W2893206995 cites W2005090293 @default.
- W2893206995 cites W2016303979 @default.
- W2893206995 cites W2036755080 @default.
- W2893206995 cites W2038398996 @default.
- W2893206995 cites W2040764940 @default.
- W2893206995 cites W2046863487 @default.
- W2893206995 cites W2052030255 @default.
- W2893206995 cites W2061344070 @default.
- W2893206995 cites W2072697915 @default.
- W2893206995 cites W2076562472 @default.
- W2893206995 cites W2081344907 @default.
- W2893206995 cites W2085740129 @default.
- W2893206995 cites W2089492827 @default.
- W2893206995 cites W2110141156 @default.
- W2893206995 cites W2135530338 @default.
- W2893206995 cites W2141614390 @default.
- W2893206995 cites W2145586089 @default.
- W2893206995 cites W2150913357 @default.
- W2893206995 cites W2158890386 @default.
- W2893206995 cites W2229703499 @default.
- W2893206995 cites W2302057904 @default.
- W2893206995 cites W2496186792 @default.
- W2893206995 cites W2564550138 @default.
- W2893206995 cites W2568383798 @default.
- W2893206995 cites W2593263209 @default.
- W2893206995 cites W2663838451 @default.
- W2893206995 cites W2792557492 @default.
- W2893206995 cites W2795574470 @default.
- W2893206995 cites W967258986 @default.
- W2893206995 doi "https://doi.org/10.1016/j.jhydrol.2018.09.057" @default.
- W2893206995 hasPublicationYear "2018" @default.
- W2893206995 type Work @default.
- W2893206995 sameAs 2893206995 @default.
- W2893206995 citedByCount "20" @default.
- W2893206995 countsByYear W28932069952019 @default.
- W2893206995 countsByYear W28932069952020 @default.
- W2893206995 countsByYear W28932069952021 @default.
- W2893206995 countsByYear W28932069952022 @default.
- W2893206995 countsByYear W28932069952023 @default.
- W2893206995 crossrefType "journal-article" @default.
- W2893206995 hasAuthorship W2893206995A5013280761 @default.
- W2893206995 hasAuthorship W2893206995A5028599678 @default.
- W2893206995 hasAuthorship W2893206995A5034826612 @default.
- W2893206995 hasAuthorship W2893206995A5044658695 @default.
- W2893206995 hasAuthorship W2893206995A5060191046 @default.
- W2893206995 hasAuthorship W2893206995A5075190563 @default.
- W2893206995 hasAuthorship W2893206995A5086247042 @default.
- W2893206995 hasConcept C114793014 @default.
- W2893206995 hasConcept C127162648 @default.
- W2893206995 hasConcept C127313418 @default.
- W2893206995 hasConcept C154945302 @default.
- W2893206995 hasConcept C187320778 @default.
- W2893206995 hasConcept C31258907 @default.
- W2893206995 hasConcept C41008148 @default.
- W2893206995 hasConcept C50644808 @default.
- W2893206995 hasConcept C69823785 @default.
- W2893206995 hasConcept C76886044 @default.
- W2893206995 hasConceptScore W2893206995C114793014 @default.
- W2893206995 hasConceptScore W2893206995C127162648 @default.
- W2893206995 hasConceptScore W2893206995C127313418 @default.
- W2893206995 hasConceptScore W2893206995C154945302 @default.
- W2893206995 hasConceptScore W2893206995C187320778 @default.
- W2893206995 hasConceptScore W2893206995C31258907 @default.
- W2893206995 hasConceptScore W2893206995C41008148 @default.
- W2893206995 hasConceptScore W2893206995C50644808 @default.
- W2893206995 hasConceptScore W2893206995C69823785 @default.
- W2893206995 hasConceptScore W2893206995C76886044 @default.
- W2893206995 hasLocation W28932069951 @default.
- W2893206995 hasOpenAccess W2893206995 @default.
- W2893206995 hasPrimaryLocation W28932069951 @default.
- W2893206995 hasRelatedWork W1596423604 @default.
- W2893206995 hasRelatedWork W1607429380 @default.