Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893222042> ?p ?o ?g. }
- W2893222042 endingPage "e2" @default.
- W2893222042 startingPage "e2" @default.
- W2893222042 abstract "Long-read sequencing currently provides sequences of several thousand base pairs. It is therefore possible to obtain complete transcripts, offering an unprecedented vision of the cellular transcriptome. However the literature lacks tools for de novo clustering of such data, in particular for Oxford Nanopore Technologies reads, because of the inherent high error rate compared to short reads. Our goal is to process reads from whole transcriptome sequencing data accurately and without a reference genome in order to reliably group reads coming from the same gene. This de novo approach is therefore particularly suitable for non-model species, but can also serve as a useful pre-processing step to improve read mapping. Our contribution both proposes a new algorithm adapted to clustering of reads by gene and a practical and free access tool that allows to scale the complete processing of eukaryotic transcriptomes. We sequenced a mouse RNA sample using the MinION device. This dataset is used to compare our solution to other algorithms used in the context of biological clustering. We demonstrate that it is the best approach for transcriptomics long reads. When a reference is available to enable mapping, we show that it stands as an alternative method that predicts complementary clusters." @default.
- W2893222042 created "2018-10-05" @default.
- W2893222042 creator A5009921112 @default.
- W2893222042 creator A5012897398 @default.
- W2893222042 creator A5048303382 @default.
- W2893222042 creator A5051923416 @default.
- W2893222042 creator A5052474408 @default.
- W2893222042 creator A5070886202 @default.
- W2893222042 creator A5076227054 @default.
- W2893222042 date "2018-09-27" @default.
- W2893222042 modified "2023-10-05" @default.
- W2893222042 title "<i>De novo</i>clustering of long reads by gene from transcriptomics data" @default.
- W2893222042 cites W1579534339 @default.
- W2893222042 cites W1903088142 @default.
- W2893222042 cites W1953000621 @default.
- W2893222042 cites W1966086904 @default.
- W2893222042 cites W1971421925 @default.
- W2893222042 cites W1986891966 @default.
- W2893222042 cites W1987820419 @default.
- W2893222042 cites W2002055996 @default.
- W2893222042 cites W2006368694 @default.
- W2893222042 cites W2021341670 @default.
- W2893222042 cites W2031006817 @default.
- W2893222042 cites W2032528091 @default.
- W2893222042 cites W2048120844 @default.
- W2893222042 cites W2054841963 @default.
- W2893222042 cites W2061099285 @default.
- W2893222042 cites W2077689651 @default.
- W2893222042 cites W2092124750 @default.
- W2893222042 cites W2100305481 @default.
- W2893222042 cites W2106678197 @default.
- W2893222042 cites W2110734043 @default.
- W2893222042 cites W2112240593 @default.
- W2893222042 cites W2113387206 @default.
- W2893222042 cites W2116699248 @default.
- W2893222042 cites W2116913753 @default.
- W2893222042 cites W2118308505 @default.
- W2893222042 cites W2120096459 @default.
- W2893222042 cites W2124351063 @default.
- W2893222042 cites W2126419817 @default.
- W2893222042 cites W2127048411 @default.
- W2893222042 cites W2131681506 @default.
- W2893222042 cites W2136145671 @default.
- W2893222042 cites W2137759177 @default.
- W2893222042 cites W2140191982 @default.
- W2893222042 cites W2141040548 @default.
- W2893222042 cites W2141490615 @default.
- W2893222042 cites W2145853890 @default.
- W2893222042 cites W2148606196 @default.
- W2893222042 cites W2149616469 @default.
- W2893222042 cites W2150208009 @default.
- W2893222042 cites W2150483253 @default.
- W2893222042 cites W2152219892 @default.
- W2893222042 cites W2152986618 @default.
- W2893222042 cites W2156125289 @default.
- W2893222042 cites W2164429509 @default.
- W2893222042 cites W2165533101 @default.
- W2893222042 cites W2173732482 @default.
- W2893222042 cites W2174657162 @default.
- W2893222042 cites W2177784250 @default.
- W2893222042 cites W2194172909 @default.
- W2893222042 cites W2334513187 @default.
- W2893222042 cites W2337011385 @default.
- W2893222042 cites W2337261418 @default.
- W2893222042 cites W2463761386 @default.
- W2893222042 cites W2566610827 @default.
- W2893222042 cites W2583377988 @default.
- W2893222042 cites W2597262405 @default.
- W2893222042 cites W2617273082 @default.
- W2893222042 cites W2622369200 @default.
- W2893222042 cites W2737928538 @default.
- W2893222042 cites W2763726643 @default.
- W2893222042 cites W2783220340 @default.
- W2893222042 cites W2794879929 @default.
- W2893222042 cites W2951397007 @default.
- W2893222042 cites W2952134619 @default.
- W2893222042 cites W344138311 @default.
- W2893222042 cites W958219903 @default.
- W2893222042 doi "https://doi.org/10.1093/nar/gky834" @default.
- W2893222042 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6326815" @default.
- W2893222042 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30260405" @default.
- W2893222042 hasPublicationYear "2018" @default.
- W2893222042 type Work @default.
- W2893222042 sameAs 2893222042 @default.
- W2893222042 citedByCount "25" @default.
- W2893222042 countsByYear W28932220422018 @default.
- W2893222042 countsByYear W28932220422019 @default.
- W2893222042 countsByYear W28932220422020 @default.
- W2893222042 countsByYear W28932220422021 @default.
- W2893222042 countsByYear W28932220422022 @default.
- W2893222042 countsByYear W28932220422023 @default.
- W2893222042 crossrefType "journal-article" @default.
- W2893222042 hasAuthorship W2893222042A5009921112 @default.
- W2893222042 hasAuthorship W2893222042A5012897398 @default.
- W2893222042 hasAuthorship W2893222042A5048303382 @default.
- W2893222042 hasAuthorship W2893222042A5051923416 @default.
- W2893222042 hasAuthorship W2893222042A5052474408 @default.
- W2893222042 hasAuthorship W2893222042A5070886202 @default.