Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893235782> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2893235782 abstract "For a graph $G$ and integer $qgeq 2$, an edge $q$-coloring of $G$ is an assignment of colors to edges of $G$, such that edges incident on a vertex span at most $q$ distinct colors. The maximum edge $q$-coloring problem seeks to maximize the number of colors in an edge $q$-coloring of a graph $G$. The problem has been studied in combinatorics in the context of {em anti-Ramsey} numbers. Algorithmically, the problem is NP-Hard for $qgeq 2$ and assuming the unique games conjecture, it cannot be approximated in polynomial time to a factor less than $1+1/q$. The case $q=2$, is particularly relevant in practice, and has been well studied from the view point of approximation algorithms. A $2$-factor algorithm is known for general graphs, and recently a $5/3$-factor approximation bound was shown for graphs with perfect matching. The algorithm (which we refer to as the matching based algorithm) is as follows: Find a maximum matching $M$ of $G$. Give distinct colors to the edges of $M$. Let $C_1,C_2,ldots, C_t$ be the connected components that results when M is removed from G. To all edges of $C_i$ give the $(|M|+i)$th color. In this paper, we first show that the approximation guarantee of the matching based algorithm is $(1 + frac {2} {delta})$ for graphs with perfect matching and minimum degree $delta$. For $delta ge 4$, this is better than the $frac {5} {3}$ approximation guarantee proved in {AAAP}. For triangle free graphs with perfect matching, we prove that the approximation factor is $(1 + frac {1}{delta - 1})$, which is better than $5/3$ for $delta ge 3$." @default.
- W2893235782 created "2018-10-05" @default.
- W2893235782 creator A5001903817 @default.
- W2893235782 creator A5024359075 @default.
- W2893235782 creator A5076736694 @default.
- W2893235782 creator A5085748277 @default.
- W2893235782 date "2018-10-01" @default.
- W2893235782 modified "2023-09-27" @default.
- W2893235782 title "Approximation bounds on maximum edge 2-coloring of dense graphs" @default.
- W2893235782 cites W1567788322 @default.
- W2893235782 cites W1662911496 @default.
- W2893235782 cites W2010526719 @default.
- W2893235782 cites W2067528372 @default.
- W2893235782 hasPublicationYear "2018" @default.
- W2893235782 type Work @default.
- W2893235782 sameAs 2893235782 @default.
- W2893235782 citedByCount "1" @default.
- W2893235782 countsByYear W28932357822019 @default.
- W2893235782 crossrefType "posted-content" @default.
- W2893235782 hasAuthorship W2893235782A5001903817 @default.
- W2893235782 hasAuthorship W2893235782A5024359075 @default.
- W2893235782 hasAuthorship W2893235782A5076736694 @default.
- W2893235782 hasAuthorship W2893235782A5085748277 @default.
- W2893235782 hasConcept C105795698 @default.
- W2893235782 hasConcept C114614502 @default.
- W2893235782 hasConcept C118615104 @default.
- W2893235782 hasConcept C123809776 @default.
- W2893235782 hasConcept C132525143 @default.
- W2893235782 hasConcept C134306372 @default.
- W2893235782 hasConcept C148764684 @default.
- W2893235782 hasConcept C149530733 @default.
- W2893235782 hasConcept C158319403 @default.
- W2893235782 hasConcept C165064840 @default.
- W2893235782 hasConcept C199594403 @default.
- W2893235782 hasConcept C203776342 @default.
- W2893235782 hasConcept C21642379 @default.
- W2893235782 hasConcept C2780990831 @default.
- W2893235782 hasConcept C311688 @default.
- W2893235782 hasConcept C33923547 @default.
- W2893235782 hasConcept C76946457 @default.
- W2893235782 hasConcept C77553402 @default.
- W2893235782 hasConcept C80899671 @default.
- W2893235782 hasConceptScore W2893235782C105795698 @default.
- W2893235782 hasConceptScore W2893235782C114614502 @default.
- W2893235782 hasConceptScore W2893235782C118615104 @default.
- W2893235782 hasConceptScore W2893235782C123809776 @default.
- W2893235782 hasConceptScore W2893235782C132525143 @default.
- W2893235782 hasConceptScore W2893235782C134306372 @default.
- W2893235782 hasConceptScore W2893235782C148764684 @default.
- W2893235782 hasConceptScore W2893235782C149530733 @default.
- W2893235782 hasConceptScore W2893235782C158319403 @default.
- W2893235782 hasConceptScore W2893235782C165064840 @default.
- W2893235782 hasConceptScore W2893235782C199594403 @default.
- W2893235782 hasConceptScore W2893235782C203776342 @default.
- W2893235782 hasConceptScore W2893235782C21642379 @default.
- W2893235782 hasConceptScore W2893235782C2780990831 @default.
- W2893235782 hasConceptScore W2893235782C311688 @default.
- W2893235782 hasConceptScore W2893235782C33923547 @default.
- W2893235782 hasConceptScore W2893235782C76946457 @default.
- W2893235782 hasConceptScore W2893235782C77553402 @default.
- W2893235782 hasConceptScore W2893235782C80899671 @default.
- W2893235782 hasLocation W28932357821 @default.
- W2893235782 hasOpenAccess W2893235782 @default.
- W2893235782 hasPrimaryLocation W28932357821 @default.
- W2893235782 hasRelatedWork W1601593591 @default.
- W2893235782 hasRelatedWork W1989856784 @default.
- W2893235782 hasRelatedWork W2022490362 @default.
- W2893235782 hasRelatedWork W2174697474 @default.
- W2893235782 hasRelatedWork W2177750332 @default.
- W2893235782 hasRelatedWork W2237276010 @default.
- W2893235782 hasRelatedWork W2613128454 @default.
- W2893235782 hasRelatedWork W2785423886 @default.
- W2893235782 hasRelatedWork W2938069350 @default.
- W2893235782 hasRelatedWork W2949907752 @default.
- W2893235782 hasRelatedWork W2950485236 @default.
- W2893235782 hasRelatedWork W2962933030 @default.
- W2893235782 hasRelatedWork W2963317864 @default.
- W2893235782 hasRelatedWork W3016624917 @default.
- W2893235782 hasRelatedWork W3022523306 @default.
- W2893235782 hasRelatedWork W3104625252 @default.
- W2893235782 hasRelatedWork W3158676953 @default.
- W2893235782 hasRelatedWork W620970122 @default.
- W2893235782 hasRelatedWork W2123734400 @default.
- W2893235782 hasRelatedWork W3082499076 @default.
- W2893235782 isParatext "false" @default.
- W2893235782 isRetracted "false" @default.
- W2893235782 magId "2893235782" @default.
- W2893235782 workType "article" @default.