Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893277904> ?p ?o ?g. }
- W2893277904 abstract "Sampling is an important and effective strategy in analyzing big data, whereby a smaller subset of a dataset is used to estimate the characteristics of its entire population. The main goal in sampling is often to achieve a significant gain in the computational time. However, a major obstacle towards this goal is the assessment of the smallest sample size needed to ensure, with a high probability, a faithful representation of the entire dataset, especially when the data set is compiled of a large number of diverse structures (e.g., clusters). To address this problem, we propose a method referred to as the Sparse Withdrawal of Inliers in a First Trial (SWIFT) that determines the smallest sample size of a subset of a dataset sampled in one grab, with the guarantee that the subset provides a sufficient number of samples from each of the underlying structures necessary for the discovery and inference. The latter is established with high probability, and the lower bound of the smallest sample size depends on probabilistic guarantees. In addition, we derive an upper bound on the smallest sample size that allows for detection of the structures and show that the two bounds are very close to each other in a variety of scenarios. We show that the problem can be modeled using either a hypergeometric or a multinomial probability mass function (pmf), and derive accurate mathematical bounds to determine a tight approximation to the sample size, leading thus to a sparse sampling strategy. The key features of the proposed method are: (i) sparseness of the sampled subset for analyzing data, where the level of sparseness is independent of the population size; (ii) no prior knowledge of the distribution of data, or the number of underlying structures in the data; and (iii) robustness in the presence of overwhelming number of outliers. We evaluate the method thoroughly in terms of accuracy, its behavior against different parameters, and its effectiveness in reducing the computational cost in various applications of computer vision, such as subspace clustering and structure from motion." @default.
- W2893277904 created "2018-10-05" @default.
- W2893277904 creator A5066402889 @default.
- W2893277904 creator A5074186297 @default.
- W2893277904 creator A5076117344 @default.
- W2893277904 date "2019-12-01" @default.
- W2893277904 modified "2023-10-08" @default.
- W2893277904 title "Sparse One-Grab Sampling with Probabilistic Guarantees" @default.
- W2893277904 cites W1493249851 @default.
- W2893277904 cites W1503931393 @default.
- W2893277904 cites W1506013575 @default.
- W2893277904 cites W1519594923 @default.
- W2893277904 cites W1606778734 @default.
- W2893277904 cites W1880706632 @default.
- W2893277904 cites W1933596703 @default.
- W2893277904 cites W1950520880 @default.
- W2893277904 cites W1963629711 @default.
- W2893277904 cites W1964443764 @default.
- W2893277904 cites W1966724323 @default.
- W2893277904 cites W1968391704 @default.
- W2893277904 cites W1969903078 @default.
- W2893277904 cites W1986007546 @default.
- W2893277904 cites W2002875082 @default.
- W2893277904 cites W2003217181 @default.
- W2893277904 cites W2009234819 @default.
- W2893277904 cites W2013712253 @default.
- W2893277904 cites W2022686119 @default.
- W2893277904 cites W2024276620 @default.
- W2893277904 cites W2040329636 @default.
- W2893277904 cites W2057097409 @default.
- W2893277904 cites W2061938589 @default.
- W2893277904 cites W2066232017 @default.
- W2893277904 cites W2067191022 @default.
- W2893277904 cites W2069959554 @default.
- W2893277904 cites W2070004597 @default.
- W2893277904 cites W2085261163 @default.
- W2893277904 cites W2090768248 @default.
- W2893277904 cites W2099295295 @default.
- W2893277904 cites W2108502244 @default.
- W2893277904 cites W2108836590 @default.
- W2893277904 cites W2111073598 @default.
- W2893277904 cites W2111196130 @default.
- W2893277904 cites W2114129181 @default.
- W2893277904 cites W2114578469 @default.
- W2893277904 cites W2114674762 @default.
- W2893277904 cites W2121148353 @default.
- W2893277904 cites W2123921160 @default.
- W2893277904 cites W2124351162 @default.
- W2893277904 cites W2124767316 @default.
- W2893277904 cites W2125742596 @default.
- W2893277904 cites W2129812935 @default.
- W2893277904 cites W2134370969 @default.
- W2893277904 cites W2136731103 @default.
- W2893277904 cites W2139054653 @default.
- W2893277904 cites W2142782401 @default.
- W2893277904 cites W2145152441 @default.
- W2893277904 cites W2150722677 @default.
- W2893277904 cites W2154201540 @default.
- W2893277904 cites W2164931791 @default.
- W2893277904 cites W2424351103 @default.
- W2893277904 cites W2528666896 @default.
- W2893277904 cites W2769591697 @default.
- W2893277904 cites W1971410590 @default.
- W2893277904 doi "https://doi.org/10.1109/tpami.2018.2871850" @default.
- W2893277904 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30371353" @default.
- W2893277904 hasPublicationYear "2019" @default.
- W2893277904 type Work @default.
- W2893277904 sameAs 2893277904 @default.
- W2893277904 citedByCount "1" @default.
- W2893277904 countsByYear W28932779042019 @default.
- W2893277904 crossrefType "journal-article" @default.
- W2893277904 hasAuthorship W2893277904A5066402889 @default.
- W2893277904 hasAuthorship W2893277904A5074186297 @default.
- W2893277904 hasAuthorship W2893277904A5076117344 @default.
- W2893277904 hasBestOaLocation W28932779041 @default.
- W2893277904 hasConcept C105795698 @default.
- W2893277904 hasConcept C106131492 @default.
- W2893277904 hasConcept C11413529 @default.
- W2893277904 hasConcept C129848803 @default.
- W2893277904 hasConcept C134306372 @default.
- W2893277904 hasConcept C140779682 @default.
- W2893277904 hasConcept C144024400 @default.
- W2893277904 hasConcept C149441793 @default.
- W2893277904 hasConcept C149923435 @default.
- W2893277904 hasConcept C154945302 @default.
- W2893277904 hasConcept C185592680 @default.
- W2893277904 hasConcept C198531522 @default.
- W2893277904 hasConcept C2776214188 @default.
- W2893277904 hasConcept C2908647359 @default.
- W2893277904 hasConcept C31972630 @default.
- W2893277904 hasConcept C33923547 @default.
- W2893277904 hasConcept C41008148 @default.
- W2893277904 hasConcept C43617362 @default.
- W2893277904 hasConcept C49937458 @default.
- W2893277904 hasConcept C77553402 @default.
- W2893277904 hasConceptScore W2893277904C105795698 @default.
- W2893277904 hasConceptScore W2893277904C106131492 @default.
- W2893277904 hasConceptScore W2893277904C11413529 @default.
- W2893277904 hasConceptScore W2893277904C129848803 @default.
- W2893277904 hasConceptScore W2893277904C134306372 @default.