Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893286041> ?p ?o ?g. }
- W2893286041 endingPage "1460" @default.
- W2893286041 startingPage "1453" @default.
- W2893286041 abstract "Abstract Motivation Given the complexity of genome regions, prioritize the functional effects of non-coding variants remains a challenge. Although several frameworks have been proposed for the evaluation of the functionality of non-coding variants, most of them used ‘black boxes’ methods that simplify the task as the pathogenicity/benign classification problem, which ignores the distinct regulatory mechanisms of variants and leads to less desirable performance. In this study, we developed DVAR, an unsupervised framework that leverage various biochemical and evolutionary evidence to distinguish the gene regulatory categories of variants and assess their comprehensive functional impact simultaneously. Results DVAR performed de novo pattern discovery in high-dimensional data and identified five regulatory clusters of non-coding variants. Leveraging the new insights into the multiple functional patterns, it measures both the between-class and the within-class functional implication of the variants to achieve accurate prioritization. Compared to other two-class learning methods, it showed improved performance in identification of clinically significant variants, fine-mapped GWAS variants, eQTLs and expression-modulating variants. Moreover, it has superior performance on disease causal variants verified by genome-editing (like CRISPR-Cas9), which could provide a pre-selection strategy for genome-editing technologies across the whole genome. Finally, evaluated in BioVU and UK Biobank, two large-scale DNA biobanks linked to complete electronic health records, DVAR demonstrated its effectiveness in prioritizing non-coding variants associated with medical phenotypes. Availability and implementation The C++ and Python source codes, the pre-computed DVAR-cluster labels and DVAR-scores across the whole genome are available at https://www.vumc.org/cgg/dvar. Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W2893286041 created "2018-10-05" @default.
- W2893286041 creator A5002531434 @default.
- W2893286041 creator A5028708641 @default.
- W2893286041 creator A5036388273 @default.
- W2893286041 creator A5052729067 @default.
- W2893286041 creator A5053453125 @default.
- W2893286041 creator A5063131315 @default.
- W2893286041 creator A5074507084 @default.
- W2893286041 creator A5079410677 @default.
- W2893286041 creator A5085813716 @default.
- W2893286041 date "2018-09-26" @default.
- W2893286041 modified "2023-10-16" @default.
- W2893286041 title "<i>De novo</i> pattern discovery enables robust assessment of functional consequences of non-coding variants" @default.
- W2893286041 cites W1544691147 @default.
- W2893286041 cites W1636205509 @default.
- W2893286041 cites W1865845132 @default.
- W2893286041 cites W1964963969 @default.
- W2893286041 cites W1969208427 @default.
- W2893286041 cites W1986223165 @default.
- W2893286041 cites W2004966039 @default.
- W2893286041 cites W2011582941 @default.
- W2893286041 cites W2018189081 @default.
- W2893286041 cites W2018363492 @default.
- W2893286041 cites W2018838463 @default.
- W2893286041 cites W2038473742 @default.
- W2893286041 cites W2056198580 @default.
- W2893286041 cites W2069429561 @default.
- W2893286041 cites W2076154138 @default.
- W2893286041 cites W2084160423 @default.
- W2893286041 cites W2102659607 @default.
- W2893286041 cites W2108797218 @default.
- W2893286041 cites W2113974339 @default.
- W2893286041 cites W2116948892 @default.
- W2893286041 cites W2127498532 @default.
- W2893286041 cites W2128016314 @default.
- W2893286041 cites W2135993011 @default.
- W2893286041 cites W2145191876 @default.
- W2893286041 cites W2146539504 @default.
- W2893286041 cites W2148105023 @default.
- W2893286041 cites W2155845523 @default.
- W2893286041 cites W2160995259 @default.
- W2893286041 cites W2161978970 @default.
- W2893286041 cites W2174602966 @default.
- W2893286041 cites W2174992367 @default.
- W2893286041 cites W2198606573 @default.
- W2893286041 cites W2225726427 @default.
- W2893286041 cites W2270152626 @default.
- W2893286041 cites W2320983896 @default.
- W2893286041 cites W2412481123 @default.
- W2893286041 cites W2412990135 @default.
- W2893286041 cites W2413629639 @default.
- W2893286041 cites W2510298658 @default.
- W2893286041 cites W2515781164 @default.
- W2893286041 cites W2521004108 @default.
- W2893286041 cites W2532527181 @default.
- W2893286041 cites W2555948505 @default.
- W2893286041 cites W2560222628 @default.
- W2893286041 cites W2587817694 @default.
- W2893286041 cites W2595351638 @default.
- W2893286041 cites W2754951713 @default.
- W2893286041 cites W2783098129 @default.
- W2893286041 cites W2799622612 @default.
- W2893286041 cites W4233310067 @default.
- W2893286041 cites W4252183347 @default.
- W2893286041 doi "https://doi.org/10.1093/bioinformatics/bty826" @default.
- W2893286041 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6499232" @default.
- W2893286041 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30256891" @default.
- W2893286041 hasPublicationYear "2018" @default.
- W2893286041 type Work @default.
- W2893286041 sameAs 2893286041 @default.
- W2893286041 citedByCount "11" @default.
- W2893286041 countsByYear W28932860412019 @default.
- W2893286041 countsByYear W28932860412021 @default.
- W2893286041 countsByYear W28932860412022 @default.
- W2893286041 crossrefType "journal-article" @default.
- W2893286041 hasAuthorship W2893286041A5002531434 @default.
- W2893286041 hasAuthorship W2893286041A5028708641 @default.
- W2893286041 hasAuthorship W2893286041A5036388273 @default.
- W2893286041 hasAuthorship W2893286041A5052729067 @default.
- W2893286041 hasAuthorship W2893286041A5053453125 @default.
- W2893286041 hasAuthorship W2893286041A5063131315 @default.
- W2893286041 hasAuthorship W2893286041A5074507084 @default.
- W2893286041 hasAuthorship W2893286041A5079410677 @default.
- W2893286041 hasAuthorship W2893286041A5085813716 @default.
- W2893286041 hasBestOaLocation W28932860412 @default.
- W2893286041 hasConcept C104317684 @default.
- W2893286041 hasConcept C106208931 @default.
- W2893286041 hasConcept C111919701 @default.
- W2893286041 hasConcept C116567970 @default.
- W2893286041 hasConcept C119857082 @default.
- W2893286041 hasConcept C135763542 @default.
- W2893286041 hasConcept C141231307 @default.
- W2893286041 hasConcept C153083717 @default.
- W2893286041 hasConcept C153209595 @default.
- W2893286041 hasConcept C41008148 @default.
- W2893286041 hasConcept C519991488 @default.
- W2893286041 hasConcept C54355233 @default.