Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893300071> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2893300071 abstract "In this thesis, we study some arithmetic and geometric problems for Shimura varieties. This thesis consists of three parts. In the first part, we study some applications of model theory to number theory. In 2014, Pila and Tsimerman gave a proof of the Ax-Schanuel conjecture for the j-function and, with Mok, have recently announced a proof of its generalization to any (pure) Shimura variety. We refer to this generalization as the hyperbolic Ax-Schanuel conjecture. In this article, we show that the hyperbolic Ax-Schanuel conjecture can be used to reduce the Zilber-Pink conjecture for Shimura varieties to a problem of point counting. We further show that this point counting problem can be tackled in a number of cases using the Pila-Wilkie counting theorem and several arithmetic conjectures. Our methods are inspired by previous applications of the Pila-Zannier method and, in particular, the recent proof by Habegger and Pila of the Zilber-Pink conjecture for curves in abelian varieties. This is joint work with Christopher Daw. The second part is devoted to a Galois cohomological result towards the proof of the Zilber-Pink conjecture. Let G be a linear algebraic group over a field k of characteristic 0. We show that any two connected semisimple k-subgroups of G that are conjugate over an algebraic closure of kare actually conjugate over a finite field extension of k of degree bounded independently of the subgroups. Moreover, if k is a real number field, we show that any two connected semisimple k-subgroups of G that are conjugate over the field of real numbers ℝ are actually conjugate over a finite real extension of k of degree bounded independently of the subgroups. This is joint work with Mikhail Borovoi and Christopher Daw. Finally, in the third part, we consider the distribution of compact Shimura varieties. We recall that a Shimura variety S of dimension 1 is always compact unless S is a modular curve. We generalize this observation by defining a height function in the space of Shimura varieties attached to a fixed real reductive group. In the case of unitary groups, we prove that the density of non-compact Shimura varieties is zero." @default.
- W2893300071 created "2018-10-05" @default.
- W2893300071 creator A5051542395 @default.
- W2893300071 date "2018-07-06" @default.
- W2893300071 modified "2023-10-06" @default.
- W2893300071 title "Around the Zilber-Pink Conjecture for Shimura Varieties" @default.
- W2893300071 hasPublicationYear "2018" @default.
- W2893300071 type Work @default.
- W2893300071 sameAs 2893300071 @default.
- W2893300071 citedByCount "0" @default.
- W2893300071 crossrefType "dissertation" @default.
- W2893300071 hasAuthorship W2893300071A5051542395 @default.
- W2893300071 hasConcept C118615104 @default.
- W2893300071 hasConcept C134306372 @default.
- W2893300071 hasConcept C136119220 @default.
- W2893300071 hasConcept C136170076 @default.
- W2893300071 hasConcept C145899342 @default.
- W2893300071 hasConcept C177148314 @default.
- W2893300071 hasConcept C202444582 @default.
- W2893300071 hasConcept C2780990831 @default.
- W2893300071 hasConcept C33923547 @default.
- W2893300071 hasConcept C46709022 @default.
- W2893300071 hasConcept C72587816 @default.
- W2893300071 hasConcept C75764964 @default.
- W2893300071 hasConcept C9652623 @default.
- W2893300071 hasConceptScore W2893300071C118615104 @default.
- W2893300071 hasConceptScore W2893300071C134306372 @default.
- W2893300071 hasConceptScore W2893300071C136119220 @default.
- W2893300071 hasConceptScore W2893300071C136170076 @default.
- W2893300071 hasConceptScore W2893300071C145899342 @default.
- W2893300071 hasConceptScore W2893300071C177148314 @default.
- W2893300071 hasConceptScore W2893300071C202444582 @default.
- W2893300071 hasConceptScore W2893300071C2780990831 @default.
- W2893300071 hasConceptScore W2893300071C33923547 @default.
- W2893300071 hasConceptScore W2893300071C46709022 @default.
- W2893300071 hasConceptScore W2893300071C72587816 @default.
- W2893300071 hasConceptScore W2893300071C75764964 @default.
- W2893300071 hasConceptScore W2893300071C9652623 @default.
- W2893300071 hasLocation W28933000711 @default.
- W2893300071 hasOpenAccess W2893300071 @default.
- W2893300071 hasPrimaryLocation W28933000711 @default.
- W2893300071 hasRelatedWork W1482627570 @default.
- W2893300071 hasRelatedWork W1496247655 @default.
- W2893300071 hasRelatedWork W1550460501 @default.
- W2893300071 hasRelatedWork W2018096946 @default.
- W2893300071 hasRelatedWork W2149951663 @default.
- W2893300071 hasRelatedWork W2337578598 @default.
- W2893300071 hasRelatedWork W2758716474 @default.
- W2893300071 hasRelatedWork W2790434796 @default.
- W2893300071 hasRelatedWork W2950621326 @default.
- W2893300071 hasRelatedWork W2951291852 @default.
- W2893300071 hasRelatedWork W2953144909 @default.
- W2893300071 hasRelatedWork W2963095535 @default.
- W2893300071 hasRelatedWork W2963392473 @default.
- W2893300071 hasRelatedWork W2980554438 @default.
- W2893300071 hasRelatedWork W3092575356 @default.
- W2893300071 hasRelatedWork W3093752979 @default.
- W2893300071 hasRelatedWork W3104228625 @default.
- W2893300071 hasRelatedWork W3153501160 @default.
- W2893300071 hasRelatedWork W41422461 @default.
- W2893300071 hasRelatedWork W603500921 @default.
- W2893300071 isParatext "false" @default.
- W2893300071 isRetracted "false" @default.
- W2893300071 magId "2893300071" @default.
- W2893300071 workType "dissertation" @default.