Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893301845> ?p ?o ?g. }
- W2893301845 endingPage "452" @default.
- W2893301845 startingPage "445" @default.
- W2893301845 abstract "Abstract Knowledge about distribution of soil properties over the landscape is required for a variety of land management applications and resources, modeling, and monitoring practices. The main aim of this research was to conduct a spatially prediction of the top soil properties such as soil organic carbon (SOC), calcium carbonate equivalent (CCE), and clay content using digital soil mapping (DSM) approaches in Borujen region, Chaharmahal-Va-Bakhtiari province, central Iran. To achieve this goal, a total of 334 soil samples were collected from 0 to 30 cm depth. Three non-linear models including Cubist (Cu), Random Forest (RF), Regression Tree (RT) and a Multiple Linear Regression (MLR) were used to link environmental covariates and the studied soil properties. The environmental covariates were obtained from a digital elevation model (DEM) and satellite imagery (Landsat Enhanced Thematic Mapper; ETM). The model was calibrated and validated by the 10-fold cross-validation approach. Root mean square error (RMSE) and coefficient of determination (R2) were used to determine the performance of the models, and relative RMSE (RMSE%) was used to define prediction accuracy. According to the RMSE and R2, Cu and RF resulted in the most accurate predictions for CCE (R2 = 0.30 and RMSE = 9.52) and clay contents (R2 = 0.15 and RMSE = 7.86), respectively, while both of RF and Cu models showed the highest performance to predict SOC content (R2 = 0.55). Results showed that remote sensing covariates (Ratio Vegetation Index and band 4) were the most important variables to explain the variability of SOC and CCE content, but only topographic attributes were responsible for clay content variation. According to RMSE% results, it could be concluded that the best model is not necessarily able to make the most accurate estimation. This study recommended that more observations and denser sampling should be carried out in the entire study area. Alternatively, stratified sampling by elevation in homogeneous sub-areas was recommended. The stratified sampling probably will increase the performance of models." @default.
- W2893301845 created "2018-10-05" @default.
- W2893301845 creator A5007089168 @default.
- W2893301845 creator A5046177232 @default.
- W2893301845 creator A5048691562 @default.
- W2893301845 creator A5058294358 @default.
- W2893301845 creator A5085936566 @default.
- W2893301845 date "2019-03-01" @default.
- W2893301845 modified "2023-10-02" @default.
- W2893301845 title "Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran" @default.
- W2893301845 cites W1552391680 @default.
- W2893301845 cites W1966873107 @default.
- W2893301845 cites W1972152951 @default.
- W2893301845 cites W1972866345 @default.
- W2893301845 cites W1989692701 @default.
- W2893301845 cites W1990021458 @default.
- W2893301845 cites W1992626825 @default.
- W2893301845 cites W1992920128 @default.
- W2893301845 cites W2011085164 @default.
- W2893301845 cites W2013840199 @default.
- W2893301845 cites W2019894796 @default.
- W2893301845 cites W2020144456 @default.
- W2893301845 cites W2022423692 @default.
- W2893301845 cites W2023312901 @default.
- W2893301845 cites W2023804675 @default.
- W2893301845 cites W2031042497 @default.
- W2893301845 cites W2048005653 @default.
- W2893301845 cites W2053002218 @default.
- W2893301845 cites W2054325787 @default.
- W2893301845 cites W2078712779 @default.
- W2893301845 cites W2079770016 @default.
- W2893301845 cites W2080562691 @default.
- W2893301845 cites W2081340599 @default.
- W2893301845 cites W2091259694 @default.
- W2893301845 cites W2095445347 @default.
- W2893301845 cites W2096735011 @default.
- W2893301845 cites W2102916476 @default.
- W2893301845 cites W2112411699 @default.
- W2893301845 cites W2116395914 @default.
- W2893301845 cites W2117416558 @default.
- W2893301845 cites W2142405095 @default.
- W2893301845 cites W2145796925 @default.
- W2893301845 cites W2155261478 @default.
- W2893301845 cites W2155544089 @default.
- W2893301845 cites W2158613289 @default.
- W2893301845 cites W2161548576 @default.
- W2893301845 cites W2196074420 @default.
- W2893301845 cites W2224936358 @default.
- W2893301845 cites W2228629397 @default.
- W2893301845 cites W2236850638 @default.
- W2893301845 cites W2239980843 @default.
- W2893301845 cites W2245710736 @default.
- W2893301845 cites W2265543600 @default.
- W2893301845 cites W2308925226 @default.
- W2893301845 cites W2413880414 @default.
- W2893301845 cites W2443230240 @default.
- W2893301845 cites W2574887438 @default.
- W2893301845 cites W2582794771 @default.
- W2893301845 cites W2590668453 @default.
- W2893301845 cites W2736245026 @default.
- W2893301845 cites W2756443134 @default.
- W2893301845 cites W2767202613 @default.
- W2893301845 cites W2767880575 @default.
- W2893301845 cites W4231864045 @default.
- W2893301845 doi "https://doi.org/10.1016/j.geoderma.2018.09.006" @default.
- W2893301845 hasPublicationYear "2019" @default.
- W2893301845 type Work @default.
- W2893301845 sameAs 2893301845 @default.
- W2893301845 citedByCount "176" @default.
- W2893301845 countsByYear W28933018452019 @default.
- W2893301845 countsByYear W28933018452020 @default.
- W2893301845 countsByYear W28933018452021 @default.
- W2893301845 countsByYear W28933018452022 @default.
- W2893301845 countsByYear W28933018452023 @default.
- W2893301845 crossrefType "journal-article" @default.
- W2893301845 hasAuthorship W2893301845A5007089168 @default.
- W2893301845 hasAuthorship W2893301845A5046177232 @default.
- W2893301845 hasAuthorship W2893301845A5048691562 @default.
- W2893301845 hasAuthorship W2893301845A5058294358 @default.
- W2893301845 hasAuthorship W2893301845A5085936566 @default.
- W2893301845 hasConcept C104471815 @default.
- W2893301845 hasConcept C127313418 @default.
- W2893301845 hasConcept C150772632 @default.
- W2893301845 hasConcept C151730666 @default.
- W2893301845 hasConcept C159390177 @default.
- W2893301845 hasConcept C159750122 @default.
- W2893301845 hasConcept C62649853 @default.
- W2893301845 hasConcept C71864017 @default.
- W2893301845 hasConceptScore W2893301845C104471815 @default.
- W2893301845 hasConceptScore W2893301845C127313418 @default.
- W2893301845 hasConceptScore W2893301845C150772632 @default.
- W2893301845 hasConceptScore W2893301845C151730666 @default.
- W2893301845 hasConceptScore W2893301845C159390177 @default.
- W2893301845 hasConceptScore W2893301845C159750122 @default.
- W2893301845 hasConceptScore W2893301845C62649853 @default.
- W2893301845 hasConceptScore W2893301845C71864017 @default.
- W2893301845 hasLocation W28933018451 @default.
- W2893301845 hasOpenAccess W2893301845 @default.