Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893323708> ?p ?o ?g. }
- W2893323708 endingPage "e6190" @default.
- W2893323708 startingPage "e6190" @default.
- W2893323708 abstract "Tropical landscapes are changing rapidly due to changes in land use and land management. Being able to predict and monitor land use change impacts on species for conservation or food security concerns requires the use of habitat quality metrics, that are consistent, can be mapped using above-ground sensor data and are relevant for species performance. Here, we focus on ground surface temperature ( Thermal ground ) and ground vegetation greenness ( NDVI down ) as potentially suitable metrics of habitat quality. Both have been linked to species demography and community structure in the literature. We test whether they can be measured consistently from the ground and whether they can be up-scaled indirectly using canopy structure maps (Leaf Area Index, LAI , and Fractional vegetation cover, FCover ) developed from Landsat remote sensing data. We measured Thermal ground and NDVI down across habitats differing in tree cover (natural grassland to forest edges to forests and tree plantations) in the human-modified coastal forested landscapes of Kwa-Zulua Natal, South Africa. We show that both metrics decline significantly with increasing canopy closure and leaf area, implying a potential pathway for upscaling both metrics using canopy structure maps derived using earth observation. Specifically, our findings suggest that opening forest canopies by 20% or decreasing forest canopy LAI by one unit would result in increases of Thermal ground by 1.2 °C across the range of observations studied. NDVI down appears to decline by 0.1 in response to an increase in canopy LAI by 1 unit and declines nonlinearly with canopy closure. Accounting for micro-scale variation in temperature and resources is seen as essential to improve biodiversity impact predictions. Our study suggests that mapping ground surface temperature and ground vegetation greenness utilising remotely sensed canopy cover maps could provide a useful tool for mapping habitat quality metrics that matter to species. However, this approach will be constrained by the predictive capacity of models used to map field-derived forest canopy attributes. Furthermore, sampling efforts are needed to capture spatial and temporal variation in Thermal ground within and across days and seasons to validate the transferability of our findings. Finally, whilst our approach shows that surface temperature and ground vegetation greenness might be suitable habitat quality metric used in biodiversity monitoring, the next step requires that we map demographic traits of species of different threat status onto maps of these metrics in landscapes differing in disturbance and management histories. The derived understanding could then be exploited for targeted landscape restoration that benefits biodiversity conservation at the landscape scale." @default.
- W2893323708 created "2018-10-05" @default.
- W2893323708 creator A5043005019 @default.
- W2893323708 creator A5069954186 @default.
- W2893323708 creator A5071693401 @default.
- W2893323708 creator A5073149861 @default.
- W2893323708 date "2019-01-10" @default.
- W2893323708 modified "2023-10-10" @default.
- W2893323708 title "Forest floor temperature and greenness link significantly to canopy attributes in South Africa’s fragmented coastal forests" @default.
- W2893323708 cites W1006483632 @default.
- W2893323708 cites W1546520224 @default.
- W2893323708 cites W1547714734 @default.
- W2893323708 cites W1583242141 @default.
- W2893323708 cites W1859543129 @default.
- W2893323708 cites W1965797800 @default.
- W2893323708 cites W1966178090 @default.
- W2893323708 cites W1968892288 @default.
- W2893323708 cites W1992244678 @default.
- W2893323708 cites W1996359250 @default.
- W2893323708 cites W1999619617 @default.
- W2893323708 cites W1999647605 @default.
- W2893323708 cites W2000102737 @default.
- W2893323708 cites W2011448625 @default.
- W2893323708 cites W2016467777 @default.
- W2893323708 cites W2027095096 @default.
- W2893323708 cites W2029193462 @default.
- W2893323708 cites W2032223785 @default.
- W2893323708 cites W2036005841 @default.
- W2893323708 cites W2041523049 @default.
- W2893323708 cites W2058226856 @default.
- W2893323708 cites W2063623478 @default.
- W2893323708 cites W2070996961 @default.
- W2893323708 cites W2078129261 @default.
- W2893323708 cites W2079014253 @default.
- W2893323708 cites W2082972917 @default.
- W2893323708 cites W2083668764 @default.
- W2893323708 cites W2094677081 @default.
- W2893323708 cites W2105748500 @default.
- W2893323708 cites W2107918911 @default.
- W2893323708 cites W2114000877 @default.
- W2893323708 cites W2115607839 @default.
- W2893323708 cites W2116635928 @default.
- W2893323708 cites W2117053024 @default.
- W2893323708 cites W2120220555 @default.
- W2893323708 cites W2124951678 @default.
- W2893323708 cites W2132668178 @default.
- W2893323708 cites W2136025335 @default.
- W2893323708 cites W2138677176 @default.
- W2893323708 cites W2141220069 @default.
- W2893323708 cites W2141325479 @default.
- W2893323708 cites W2148333466 @default.
- W2893323708 cites W2149928193 @default.
- W2893323708 cites W2151532290 @default.
- W2893323708 cites W2164434526 @default.
- W2893323708 cites W2276773574 @default.
- W2893323708 cites W2280891761 @default.
- W2893323708 cites W2319332861 @default.
- W2893323708 cites W2322750819 @default.
- W2893323708 cites W2499435773 @default.
- W2893323708 cites W2614464134 @default.
- W2893323708 cites W2750493393 @default.
- W2893323708 cites W2757189212 @default.
- W2893323708 cites W2764091861 @default.
- W2893323708 cites W2765867421 @default.
- W2893323708 cites W2767399304 @default.
- W2893323708 cites W2770388737 @default.
- W2893323708 cites W2793491628 @default.
- W2893323708 cites W2898248741 @default.
- W2893323708 cites W2911603539 @default.
- W2893323708 doi "https://doi.org/10.7717/peerj.6190" @default.
- W2893323708 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6330204" @default.
- W2893323708 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30648017" @default.
- W2893323708 hasPublicationYear "2019" @default.
- W2893323708 type Work @default.
- W2893323708 sameAs 2893323708 @default.
- W2893323708 citedByCount "10" @default.
- W2893323708 countsByYear W28933237082019 @default.
- W2893323708 countsByYear W28933237082020 @default.
- W2893323708 countsByYear W28933237082021 @default.
- W2893323708 countsByYear W28933237082022 @default.
- W2893323708 countsByYear W28933237082023 @default.
- W2893323708 crossrefType "journal-article" @default.
- W2893323708 hasAuthorship W2893323708A5043005019 @default.
- W2893323708 hasAuthorship W2893323708A5069954186 @default.
- W2893323708 hasAuthorship W2893323708A5071693401 @default.
- W2893323708 hasAuthorship W2893323708A5073149861 @default.
- W2893323708 hasBestOaLocation W28933237081 @default.
- W2893323708 hasConcept C100970517 @default.
- W2893323708 hasConcept C101000010 @default.
- W2893323708 hasConcept C142724271 @default.
- W2893323708 hasConcept C1549246 @default.
- W2893323708 hasConcept C159985019 @default.
- W2893323708 hasConcept C185933670 @default.
- W2893323708 hasConcept C18903297 @default.
- W2893323708 hasConcept C192562407 @default.
- W2893323708 hasConcept C204323151 @default.
- W2893323708 hasConcept C205649164 @default.
- W2893323708 hasConcept C25989453 @default.