Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893329061> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2893329061 abstract "The role of mathematics in cancer research has steadily increased over time. Multidisciplinarycollaboration in cancer research is essential and mathematical applications cansignificantly contribute to many areas of cancer research. For example, mathematicalmodels can provide deeper insight and establish a framework for understanding propertiesof cancer cells. Modeling the effects of radiation on cancer cells is one of the mostinteresting areas in mathematical biology and a variety of models by using the Targettheory and DNA fragmentations have been applied to describe how radiation influencetumor cells. In this study, two new mathematical frameworks are proposed to model thepopulation dynamics of heterogeneous tumor cells after the treatment with external beamradiation. The first model is derived based on the Target Theory and Hit Theory. Accordingto these theories, the tumor population is divided into m different sub-populationsbased on the different effects of ionizing radiations on human cells. This model consistsof a system of differential equations with random variable coefficients representingthe dynamics transition rates between sub-populations. The model is also describingthe heterogeneity of the cell damage and the repair mechanism between two consecutivedose fractions. In the second model, we study the population dynamics of breast cancercells treated with radiotherapy by using a system of stochastic differential equations. Accordingto the cell cycle, each cell belongs to one of three subpopulations G, S, or M,representing gap, synthesis, and mitosis subpopulations. Cells in the M subpopulationare highly radio-sensitive, whereas cells in the S subpopulation are highly radio-resistant.Therefore, in the process of radiotherapy, cell death rates of different subpopulations are not equal. In addition, since flow cytometry is unable to detect apoptotic cells accurately,the small changes in cell death rate in each subpopulation during treatment are considered.Therefore, a new definition for the lifespan of the tumor based on population size isintroduced. Tumor Lifespan is defined as the minimum number of dose fractions neededto remove the whole tumor. The stability of the first model is studied by considering threecases. For the first and second cases, we assumed that each cell has two and three targets(m = 2 and m = 3). Applying Routh-Hurwitz criterion, it is proven that the system isstable when the probability that one target becomes deactivated after the application ofa dose fraction (q) is greater than or equal to 0.5. Finally, the system stability for thethird case is investigated analytically when each cell assumed has m targets. By usingGershgorin theorem, it is shown that the system is stable where q > 0:5. In the secondmodel, the existence and uniqueness of the solution are proven and an explicit solutionfor the SDE model is presented. Moreover, the system stability is investigated via a necessaryand sufficient condition on model parameters. The transition rates are estimatedin a steady state condition. Subsequently, the model is solved numerically using Euler-Murayama and Milstein methods and the other parameters of the model are estimatedusing parametric and nonparametric simulated likelihood estimation parameter methods.Finally, we did a number of experiments on MCF-7 breast cancer cell line. The cell cycleanalysis assay has been used to analyze experimental data. Then the obtained data is appliedand able to calibrate and verify our models." @default.
- W2893329061 created "2018-10-05" @default.
- W2893329061 creator A5020933108 @default.
- W2893329061 date "2018-05-01" @default.
- W2893329061 modified "2023-09-27" @default.
- W2893329061 title "Mathematical modeling of the tumor cells population dynamics in breast cancer / Amin Oroji" @default.
- W2893329061 hasPublicationYear "2018" @default.
- W2893329061 type Work @default.
- W2893329061 sameAs 2893329061 @default.
- W2893329061 citedByCount "0" @default.
- W2893329061 crossrefType "dissertation" @default.
- W2893329061 hasAuthorship W2893329061A5020933108 @default.
- W2893329061 hasConcept C105795698 @default.
- W2893329061 hasConcept C121332964 @default.
- W2893329061 hasConcept C121608353 @default.
- W2893329061 hasConcept C121864883 @default.
- W2893329061 hasConcept C127491075 @default.
- W2893329061 hasConcept C145912823 @default.
- W2893329061 hasConcept C20129857 @default.
- W2893329061 hasConcept C24890656 @default.
- W2893329061 hasConcept C28826006 @default.
- W2893329061 hasConcept C2908647359 @default.
- W2893329061 hasConcept C29537977 @default.
- W2893329061 hasConcept C33923547 @default.
- W2893329061 hasConcept C41008148 @default.
- W2893329061 hasConcept C54355233 @default.
- W2893329061 hasConcept C60644358 @default.
- W2893329061 hasConcept C71924100 @default.
- W2893329061 hasConcept C76969082 @default.
- W2893329061 hasConcept C86803240 @default.
- W2893329061 hasConcept C96232424 @default.
- W2893329061 hasConcept C99454951 @default.
- W2893329061 hasConceptScore W2893329061C105795698 @default.
- W2893329061 hasConceptScore W2893329061C121332964 @default.
- W2893329061 hasConceptScore W2893329061C121608353 @default.
- W2893329061 hasConceptScore W2893329061C121864883 @default.
- W2893329061 hasConceptScore W2893329061C127491075 @default.
- W2893329061 hasConceptScore W2893329061C145912823 @default.
- W2893329061 hasConceptScore W2893329061C20129857 @default.
- W2893329061 hasConceptScore W2893329061C24890656 @default.
- W2893329061 hasConceptScore W2893329061C28826006 @default.
- W2893329061 hasConceptScore W2893329061C2908647359 @default.
- W2893329061 hasConceptScore W2893329061C29537977 @default.
- W2893329061 hasConceptScore W2893329061C33923547 @default.
- W2893329061 hasConceptScore W2893329061C41008148 @default.
- W2893329061 hasConceptScore W2893329061C54355233 @default.
- W2893329061 hasConceptScore W2893329061C60644358 @default.
- W2893329061 hasConceptScore W2893329061C71924100 @default.
- W2893329061 hasConceptScore W2893329061C76969082 @default.
- W2893329061 hasConceptScore W2893329061C86803240 @default.
- W2893329061 hasConceptScore W2893329061C96232424 @default.
- W2893329061 hasConceptScore W2893329061C99454951 @default.
- W2893329061 hasLocation W28933290611 @default.
- W2893329061 hasOpenAccess W2893329061 @default.
- W2893329061 hasPrimaryLocation W28933290611 @default.
- W2893329061 hasRelatedWork W1585701518 @default.
- W2893329061 hasRelatedWork W175306311 @default.
- W2893329061 hasRelatedWork W1994141285 @default.
- W2893329061 hasRelatedWork W2006163522 @default.
- W2893329061 hasRelatedWork W2010849649 @default.
- W2893329061 hasRelatedWork W2017022656 @default.
- W2893329061 hasRelatedWork W2038457417 @default.
- W2893329061 hasRelatedWork W2057986777 @default.
- W2893329061 hasRelatedWork W2086042539 @default.
- W2893329061 hasRelatedWork W2370149057 @default.
- W2893329061 hasRelatedWork W2506100295 @default.
- W2893329061 hasRelatedWork W2783446336 @default.
- W2893329061 hasRelatedWork W2784883869 @default.
- W2893329061 hasRelatedWork W282074804 @default.
- W2893329061 hasRelatedWork W2910693622 @default.
- W2893329061 hasRelatedWork W2951503290 @default.
- W2893329061 hasRelatedWork W2952823565 @default.
- W2893329061 hasRelatedWork W2991598261 @default.
- W2893329061 hasRelatedWork W3009841411 @default.
- W2893329061 hasRelatedWork W3010356604 @default.
- W2893329061 isParatext "false" @default.
- W2893329061 isRetracted "false" @default.
- W2893329061 magId "2893329061" @default.
- W2893329061 workType "dissertation" @default.