Matches in SemOpenAlex for { <https://semopenalex.org/work/W2893357354> ?p ?o ?g. }
- W2893357354 endingPage "52" @default.
- W2893357354 startingPage "36" @default.
- W2893357354 abstract "Many architectural designers recognize the potential of parametric models as a worthwhile approach to performance-driven design. A variety of performance simulations are now possible within computational design environments, and the framework of design space exploration allows users to generate and navigate various possibilities while considering both qualitative and quantitative feedback. At the same time, it can be difficult to formulate a parametric design space in a way that leads to compelling solutions and does not limit flexibility. This article proposes and tests the extension of machine learning and data analysis techniques to early problem setup in order to interrogate, modify, relate, transform, and automatically generate design variables for architectural investigations. Through analysis of two case studies involving structure and daylight, this article demonstrates initial workflows for determining variable importance, finding overall control sliders that relate directly to performance and automatically generating meaningful variables for specific typologies." @default.
- W2893357354 created "2018-10-05" @default.
- W2893357354 creator A5062392563 @default.
- W2893357354 creator A5087840640 @default.
- W2893357354 date "2018-09-28" @default.
- W2893357354 modified "2023-10-17" @default.
- W2893357354 title "Design variable analysis and generation for performance-based parametric modeling in architecture" @default.
- W2893357354 cites W1565892968 @default.
- W2893357354 cites W1583386373 @default.
- W2893357354 cites W1965672041 @default.
- W2893357354 cites W1969766183 @default.
- W2893357354 cites W1984121966 @default.
- W2893357354 cites W1984753492 @default.
- W2893357354 cites W1987066701 @default.
- W2893357354 cites W1990517717 @default.
- W2893357354 cites W2001842014 @default.
- W2893357354 cites W2011300073 @default.
- W2893357354 cites W2016513411 @default.
- W2893357354 cites W2021313035 @default.
- W2893357354 cites W2023989269 @default.
- W2893357354 cites W2029877285 @default.
- W2893357354 cites W2038125062 @default.
- W2893357354 cites W2038492828 @default.
- W2893357354 cites W2061246436 @default.
- W2893357354 cites W2085512126 @default.
- W2893357354 cites W2093318255 @default.
- W2893357354 cites W2096619076 @default.
- W2893357354 cites W2100235303 @default.
- W2893357354 cites W2133430342 @default.
- W2893357354 cites W2134312057 @default.
- W2893357354 cites W2138002307 @default.
- W2893357354 cites W2140095548 @default.
- W2893357354 cites W2147241601 @default.
- W2893357354 cites W2151635674 @default.
- W2893357354 cites W2152799051 @default.
- W2893357354 cites W2158949820 @default.
- W2893357354 cites W2171719184 @default.
- W2893357354 cites W2343195040 @default.
- W2893357354 cites W2402658388 @default.
- W2893357354 cites W2533075964 @default.
- W2893357354 cites W2580330631 @default.
- W2893357354 cites W2583610857 @default.
- W2893357354 cites W2593928636 @default.
- W2893357354 cites W4211231786 @default.
- W2893357354 cites W4243442908 @default.
- W2893357354 cites W62275428 @default.
- W2893357354 doi "https://doi.org/10.1177/1478077118799491" @default.
- W2893357354 hasPublicationYear "2018" @default.
- W2893357354 type Work @default.
- W2893357354 sameAs 2893357354 @default.
- W2893357354 citedByCount "24" @default.
- W2893357354 countsByYear W28933573542019 @default.
- W2893357354 countsByYear W28933573542020 @default.
- W2893357354 countsByYear W28933573542021 @default.
- W2893357354 countsByYear W28933573542022 @default.
- W2893357354 countsByYear W28933573542023 @default.
- W2893357354 crossrefType "journal-article" @default.
- W2893357354 hasAuthorship W2893357354A5062392563 @default.
- W2893357354 hasAuthorship W2893357354A5087840640 @default.
- W2893357354 hasConcept C105795698 @default.
- W2893357354 hasConcept C111919701 @default.
- W2893357354 hasConcept C117251300 @default.
- W2893357354 hasConcept C123657996 @default.
- W2893357354 hasConcept C127413603 @default.
- W2893357354 hasConcept C134306372 @default.
- W2893357354 hasConcept C136197465 @default.
- W2893357354 hasConcept C13736549 @default.
- W2893357354 hasConcept C142362112 @default.
- W2893357354 hasConcept C151201525 @default.
- W2893357354 hasConcept C153349607 @default.
- W2893357354 hasConcept C154945302 @default.
- W2893357354 hasConcept C177212765 @default.
- W2893357354 hasConcept C182365436 @default.
- W2893357354 hasConcept C24574437 @default.
- W2893357354 hasConcept C2778370241 @default.
- W2893357354 hasConcept C2778572836 @default.
- W2893357354 hasConcept C2780598303 @default.
- W2893357354 hasConcept C33923547 @default.
- W2893357354 hasConcept C41008148 @default.
- W2893357354 hasConcept C77088390 @default.
- W2893357354 hasConceptScore W2893357354C105795698 @default.
- W2893357354 hasConceptScore W2893357354C111919701 @default.
- W2893357354 hasConceptScore W2893357354C117251300 @default.
- W2893357354 hasConceptScore W2893357354C123657996 @default.
- W2893357354 hasConceptScore W2893357354C127413603 @default.
- W2893357354 hasConceptScore W2893357354C134306372 @default.
- W2893357354 hasConceptScore W2893357354C136197465 @default.
- W2893357354 hasConceptScore W2893357354C13736549 @default.
- W2893357354 hasConceptScore W2893357354C142362112 @default.
- W2893357354 hasConceptScore W2893357354C151201525 @default.
- W2893357354 hasConceptScore W2893357354C153349607 @default.
- W2893357354 hasConceptScore W2893357354C154945302 @default.
- W2893357354 hasConceptScore W2893357354C177212765 @default.
- W2893357354 hasConceptScore W2893357354C182365436 @default.
- W2893357354 hasConceptScore W2893357354C24574437 @default.
- W2893357354 hasConceptScore W2893357354C2778370241 @default.
- W2893357354 hasConceptScore W2893357354C2778572836 @default.
- W2893357354 hasConceptScore W2893357354C2780598303 @default.